Skip to main content

Hashed Random Projection layer for TF2/Keras

Project description

PyPI version PyPi downloads

keras-hrp

Hashed Random Projection layer for TF2/Keras.

Usage

Hashed Random Projections (HRP), binary representations, encoding/decoding for storage (notebook)

Generate a HRP layer with a new hyperplane

The random projection or hyperplane is randomly initialized. The initial state of the PRNG (random_state) is required (Default: 42) to ensure reproducibility.

import keras_hrp as khrp
import tensorflow as tf

BATCH_SIZE = 32
NUM_FEATURES = 64
OUTPUT_SIZE = 1024

# demo inputs
inputs = tf.random.normal(shape=(BATCH_SIZE, NUM_FEATURES))

# instantiate layer 
layer = khrp.HashedRandomProjection(
    output_size=OUTPUT_SIZE,
    random_state=42   # Default: 42
)

# run it
outputs = layer(inputs)
assert outputs.shape == (BATCH_SIZE, OUTPUT_SIZE)

Instiantiate HRP layer with given hyperplane

import keras_hrp as khrp
import tensorflow as tf
import numpy as np

BATCH_SIZE = 32
NUM_FEATURES = 64
OUTPUT_SIZE = 1024

# demo inputs
inputs = tf.random.normal(shape=(BATCH_SIZE, NUM_FEATURES))

# create hyperplane as numpy array
myhyperplane = np.random.randn(NUM_FEATURES, OUTPUT_SIZE)

# instantiate layer 
layer = khrp.HashedRandomProjection(hyperplane=myhyperplane)

# run it
outputs = layer(inputs)
assert outputs.shape == (BATCH_SIZE, OUTPUT_SIZE)

Serialize Boolean to Int8

Python stores 1-bit boolean values always as 8-bit integers or 1-byte. Some database technologies behave in similar way, and use up 8x-times of the theoretically required storage space (e.g., Postgres boolean uses 1-byte instead of 1-bit). In order to save memory or storage space, chuncks of 8 boolean vector elements can be transformed into one 1-byte int8 number.

import keras_hrp as khrp
import numpy as np

# given boolean values
hashvalues = np.array([1, 0, 1, 0, 1, 1, 0, 0])

# serialize boolean to int8
serialized = khrp.bool_to_int8(hashvalues)

# deserialize int8 to boolean
deserialized = khrp.int8_to_bool(serialized)

# check
np.testing.assert_array_equal(deserialized, hashvalues)

Appendix

Installation

The keras-hrp git repo is available as PyPi package

pip install keras-hrp
pip install git+ssh://git@github.com/ulf1/keras-hrp.git

Install a virtual environment

python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt --no-cache-dir
pip install -r requirements-dev.txt --no-cache-dir
pip install -r requirements-demo.txt --no-cache-dir

(If your git repo is stored in a folder with whitespaces, then don't use the subfolder .venv. Use an absolute path without whitespaces.)

Python commands

  • Jupyter for the examples: jupyter lab
  • Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
  • Run Unit Tests: PYTHONPATH=. pytest

Publish

# pandoc README.md --from markdown --to rst -s -o README.rst
python setup.py sdist 
twine upload -r pypi dist/*

Clean up

find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv

Support

Please open an issue for support.

Contributing

Please contribute using Github Flow. Create a branch, add commits, and open a pull request.

Acknowledgements

The "Evidence" project was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 433249742 (GU 798/27-1; GE 1119/11-1).

Maintenance

  • till 31.Aug.2023 (v0.1.0) the code repository was maintained within the DFG project 433249742
  • since 01.Sep.2023 (v0.2.0) the code repository is maintained by @ulf1.

Citation

Please cite the arXiv Preprint when using this software for any purpose.

@misc{hamster2023rediscovering,
      title={Rediscovering Hashed Random Projections for Efficient Quantization of Contextualized Sentence Embeddings}, 
      author={Ulf A. Hamster and Ji-Ung Lee and Alexander Geyken and Iryna Gurevych},
      year={2023},
      eprint={2304.02481},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-hrp-0.2.0.tar.gz (9.6 kB view details)

Uploaded Source

File details

Details for the file keras-hrp-0.2.0.tar.gz.

File metadata

  • Download URL: keras-hrp-0.2.0.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for keras-hrp-0.2.0.tar.gz
Algorithm Hash digest
SHA256 03909b40a26c2f3270c99f649cc2e8e6aceaf7dc005ba2d73e56fafed8fbb75c
MD5 88314389617cf68bd4531f1975dfc567
BLAKE2b-256 21893a3290e28f3c2d2d7b7b60db92367a7b25e84ac6ff94ecfb835307d3fb8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page