Skip to main content

A thin wrapper around keras image classification applications.

Project description

keras-image-classification-wrapper

A thin wrapper around keras image classification applications.

Installation

pip install keras-image-classification-wrapper

Usage

  • </code></pre>
    </li>
    </ul>
    <p>def classify(
    image: Union[str, bytes, pillow.Image.Image],
    results: int = 3,
    model: str = INCEPTIONV3,
    ) -> tuple:</p>
    <pre><code>
       Classify an image.
       
       `results` has to be less that 5, since keras applications don't give more than five results.
       
       `model` has to be one of: `XCEPTION`, `VGG16`, `VGG19`, `RESNET50`, `RESNET101`, `RESNET152`, `RESNET50V2`, `RESNET101V2`, `RESNET152V2`, `INCEPTIONV3`, `INCEPTIONRESNETV2`, `MOBILENET`, `MOBILENETV2`, `DENSENET121`, `DENSENET169`, `DENSENET201`, `NASNETMOBILE`, `NASNETLARGE`, `EFFICIENTNETB0`, `EFFICIENTNETB1`, `EFFICIENTNETB2`, `EFFICIENTNETB3`, `EFFICIENTNETB4`, `EFFICIENTNETB5`, `EFFICIENTNETB6`, `EFFICIENTNETB7`. Take a look at [model characteristics](https://keras.io/api/applications/#available-models), if you are not sure, which one to choose.
    
     - ``` python
    def load_model(model: str) -> None:
    

    Preload a model.

    Loading of desired model is done automatically at the first call of classify. But it can take significant time, if weights need to be downloaded. So you can preload a model.

    Usage examples

    With local files:

    import keras_image_classification as image_classification
    
    file_path = "path/to/image.png"
    
    labels = image_classification.classify(file_path, results = 3, model = image_classification.INCEPTIONV3)
    print(labels)
    

    With byte-like objects (here with requests):

    import requests
    import keras_image_classification as image_classification
    
    response = requests.get("https://http.cat/100")
    assert response.status_code == 200
    
    labels = image_classification.classify(response.content, results = 3, model = image_classification.INCEPTIONV3)
    print(labels)
    

    You can also pass pillow images directly:

    import PIL as pillow
    import keras_image_classification as image_classification
    
    file_path = "path/to/image.png"
    image = pillow.Image.open(file_path)
    
    labels = image_classification.classify(image, results = 3, model = image_classification.INCEPTIONV3)
    print(labels)
    

    Output:

    ({'label': 'Persian_cat', 'probability': 0.7992992997169495}, {'label': 'web_site', 'probability': 0.03164924681186676}, {'label': 'jigsaw_puzzle', 'probability': 0.0135102029889822})
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file keras-image-classification-wrapper-0.0.1.tar.gz.

File metadata

  • Download URL: keras-image-classification-wrapper-0.0.1.tar.gz
  • Upload date:
  • Size: 3.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for keras-image-classification-wrapper-0.0.1.tar.gz
Algorithm Hash digest
SHA256 c0877a947f7c36cd9d8a0779f8792b19bf8837d43f38a4ef7129c3a505a7359d
MD5 c664765e10092cadd5bdb3e8174d14ee
BLAKE2b-256 c198fa76d5302aecfd036917e42f3aa2f2e11400d5471ffcb27ddb74b74269a9

See more details on using hashes here.

File details

Details for the file keras_image_classification_wrapper-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: keras_image_classification_wrapper-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 4.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for keras_image_classification_wrapper-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b4fcb98a226bcc4e48d5553290e5f78eb7cd320bff4779773250674f156b028e
MD5 7f287af43b1b01895e8a4db20727df5d
BLAKE2b-256 0a9dd6125457a6b54453c20fb187f0f541b05f87b40abc8c98d8fb3b2ba93700

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page