Skip to main content

A thin wrapper around keras image classification applications.

Project description

keras-image-classification-wrapper

A thin wrapper around keras image classification applications.

Installation

pip install keras-image-classification-wrapper

Usage

def classify(
    image: Union[str, bytes, pillow.Image.Image],
    results: int = 3,
    model: str = INCEPTIONV3,
) -> tuple:

Classify an image.

results has to be less that 5, since keras applications don't give more than five results.

model has to be one of: XCEPTION, VGG16, VGG19, RESNET50, RESNET101, RESNET152, RESNET50V2, RESNET101V2, RESNET152V2, RESNETRS101, RESNETRS152, RESNETRS200, RESNETRS270, RESNETRS350, RESNETRS420, REGNETX002, REGNETX004, REGNETX006, REGNETX008, REGNETX016, REGNETX032, REGNETX040, REGNETX064, REGNETX080, REGNETX120, REGNETX160, REGNETX320, REGNETY002, REGNETY004, REGNETY006, REGNETY008, REGNETY016, REGNETY032, REGNETY040, REGNETY064, REGNETY080, REGNETY120, REGNETY160, REGNETY320, INCEPTIONV3, INCEPTIONRESNETV2, MOBILENET, MOBILENETV2, MOBILENETV3SMALL, MOBILENETV3LARGE, DENSENET121, DENSENET169, DENSENET201, NASNETMOBILE, NASNETLARGE, EFFICIENTNETB0, EFFICIENTNETB1, EFFICIENTNETB2, EFFICIENTNETB3, EFFICIENTNETB4, EFFICIENTNETB5, EFFICIENTNETB6, EFFICIENTNETB7, EFFICIENTNETV2B0, EFFICIENTNETV2B1, EFFICIENTNETV2B2, EFFICIENTNETV2B3, EFFICIENTNETV2S, EFFICIENTNETV2M, EFFICIENTNETV2L. Take a look at model characteristics, if you are not sure, which one to choose.

def load_model(model: str) -> None:

Preload a model.

Loading of desired model is done automatically at the first call of classify. But it can take significant time, if weights need to be downloaded. So you can preload a model.

Usage examples

With local files:

import keras_image_classification as image_classification

file_path = "path/to/image.png"

labels = image_classification.classify(file_path, results = 3,
                                       model = image_classification.INCEPTIONV3)
print(labels)

With byte-like objects (here with requests):

import requests
import keras_image_classification as image_classification

response = requests.get("https://http.cat/100")
assert response.status_code == 200

labels = image_classification.classify(response.content, results = 3,
                                       model = image_classification.INCEPTIONV3)
print(labels)

You can also pass pillow images directly:

import PIL as pillow
import keras_image_classification as image_classification

file_path = "path/to/image.png"
image = pillow.Image.open(file_path)

labels = image_classification.classify(image, results = 3,
                                       model = image_classification.INCEPTIONV3)
print(labels)

Output:

({'imagenet_id': 'n02123394', 'label': 'Persian_cat', 'probability': 0.7993967533111572},
 {'imagenet_id': 'n06359193', 'label': 'web_site', 'probability': 0.03162319213151932},
 {'imagenet_id': 'n03598930', 'label': 'jigsaw_puzzle', 'probability': 0.013497020117938519})

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file keras-image-classification-wrapper-0.0.3.tar.gz.

File metadata

  • Download URL: keras-image-classification-wrapper-0.0.3.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.5

File hashes

Hashes for keras-image-classification-wrapper-0.0.3.tar.gz
Algorithm Hash digest
SHA256 213088548e48fc0bcf6712a8f9c91912d4fcd48184fce174fba8c0e6f13632d3
MD5 48174ba5285b95dd5c369e076f951b13
BLAKE2b-256 46007064c39adfebe7ee8d465d148fc2a21525fa2dd5193f70b3c65b6a9800f2

See more details on using hashes here.

File details

Details for the file keras_image_classification_wrapper-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: keras_image_classification_wrapper-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 5.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.5

File hashes

Hashes for keras_image_classification_wrapper-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 fbbc30e8569123c600274545de2de9ad38e299988b4b539af628f6059ab4d99b
MD5 91218033206ab45b40e9d21ea4eefe6d
BLAKE2b-256 0fbfcc817b1f3008fb536f78b2cfcb4e708b158e8a87add808f3b1a6496e0110

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page