RNNs with layer normalization
Project description
keras-layernorm-rnn
Table of Contents
Installation
The keras-layernorm-rnn
git repo is available as PyPi package
pip install keras-layernorm-rnn
pip install git+ssh://git@github.com/kmedian/keras-layernorm-rnn.git
Usage
Check the examples folder for notebooks.
import tensorflow as tf
from keras_layernorm_rnn import LayernormLSTM3
model = tf.keras.Sequential([
LayernormLSTM3(units=8, return_sequences=False), # Many-to-One
tf.keras.layers.Dense(1, activation='linear')
])
Commands
Install a virtual environment
python3 -m venv .venv
source .venv/bin/activate
pip3 install --upgrade pip
pip3 install -r requirements.txt
(If your git repo is stored in a folder with whitespaces, then don't use the subfolder .venv
. Use an absolute path without whitespaces.)
Python commands
- Jupyter for the examples:
jupyter lab
- Check syntax:
flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
- Run Unit Test:
python keras_layernorm_rnn/layernorm_simplernn_test.py
- Upload to PyPi with twine:
python setup.py sdist && twine upload -r pypi dist/*
Clean up
find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv
Support
Please open an issue for support.
Contributing
Please contribute using Github Flow. Create a branch, add commits, and open a pull request.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
keras-layernorm-rnn-0.2.1.tar.gz
(10.4 kB
view details)
File details
Details for the file keras-layernorm-rnn-0.2.1.tar.gz
.
File metadata
- Download URL: keras-layernorm-rnn-0.2.1.tar.gz
- Upload date:
- Size: 10.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf9122cde59a5b056c04829f7a16f3a98c40c6558571e160e2c7d040ff9fe7c9 |
|
MD5 | 623267e63f160f728ba93240c17a775a |
|
BLAKE2b-256 | 181a511f106365836f4e5377b4ce84b72108e5b16d3bf39e1043c2fcaf3ab722 |