Skip to main content

Metrics for Keras model evaluation

Project description

Keras Metrics

Build Status

This package provides metrics for evaluation of Keras classification models. The metrics are safe to use for batch-based model evaluation.

Installation

To install the package from the PyPi repository you can execute the following command:

pip install keras-metrics

Usage

The usage of the package is simple:

import keras
import keras_metrics as km

model = models.Sequential()
model.add(keras.layers.Dense(1, activation="sigmoid", input_dim=2))
model.add(keras.layers.Dense(1, activation="softmax"))

model.compile(optimizer="sgd",
              loss="binary_crossentropy",
              metrics=[km.binary_precision(), km.binary_recall()])

Similar configuration for multi-label binary crossentropy:

import keras
import keras_metrics as km

model = models.Sequential()
model.add(keras.layers.Dense(1, activation="sigmoid", input_dim=2))
model.add(keras.layers.Dense(2, activation="softmax"))

# Calculate precision for the second label.
precision = km.binary_precision(label=1)

# Calculate recall for the first label.
recall = km.binary_recall(label=0)

model.compile(optimizer="sgd",
              loss="binary_crossentropy",
              metrics=[precision, recall])

Keras metrics package also supports metrics for categorical crossentropy and sparse categorical crossentropy:

import keras_metrics as km

c_precision = km.categorical_precision()
sc_precision = km.sparse_categorical_precision()

# ...

Tensorflow Keras

Tensorflow library provides the keras package as parts of its API, in order to use keras_metrics with Tensorflow Keras, you are advised to perform model training with initialized global variables:

import numpy as np
import keras_metrics as km
import tensorflow as tf
import tensorflow.keras as keras

model = keras.Sequential()
model.add(keras.layers.Dense(1, activation="softmax"))
model.compile(optimizer="sgd",
              loss="binary_crossentropy",
              metrics=[km.binary_true_positive()])

x = np.array([[0], [1], [0], [1]])
y = np.array([1, 0, 1, 0]

# Wrap model.fit into the session with global
# variables initialization.
with tf.Session() as s:
    s.run(tf.global_variables_initializer())
    model.fit(x=x, y=y)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-metrics-1.1.0.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

keras_metrics-1.1.0-py2.py3-none-any.whl (5.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file keras-metrics-1.1.0.tar.gz.

File metadata

  • Download URL: keras-metrics-1.1.0.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5

File hashes

Hashes for keras-metrics-1.1.0.tar.gz
Algorithm Hash digest
SHA256 e65b8ace5f4d2100452d3109ef755870f1cfc00d13cb6d8eb96084aee2f5efa2
MD5 4eef07ad1a57a62f0577fbc030f7b8c6
BLAKE2b-256 3c3946e985d0718d692384c5feb006bb2dcb5846ce60b1ec94db323747b53c90

See more details on using hashes here.

File details

Details for the file keras_metrics-1.1.0-py2.py3-none-any.whl.

File metadata

  • Download URL: keras_metrics-1.1.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 5.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5

File hashes

Hashes for keras_metrics-1.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 07504def2a674b46e8907c2117ac12c7815c212889c5b31f8c015f7440d279dc
MD5 15e20fc5d8a2263d68c1690fc446943e
BLAKE2b-256 32c9a87420da8e73de944e63a8e9cdcfb1f03ca31a7c4cdcdbd45d2cdf13275a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page