Metrics for Keras model evaluation
Project description
Keras Metrics
This package provides metrics for evaluation of Keras classification models. The metrics are safe to use for batch-based model evaluation.
Installation
To install the package from the PyPi repository you can execute the following command:
pip install keras-metrics
Usage
The usage of the package is simple:
import keras
import keras_metrics as km
model = models.Sequential()
model.add(keras.layers.Dense(1, activation="sigmoid", input_dim=2))
model.add(keras.layers.Dense(1, activation="softmax"))
model.compile(optimizer="sgd",
loss="binary_crossentropy",
metrics=[km.binary_precision(), km.binary_recall()])
Similar configuration for multi-label binary crossentropy:
import keras
import keras_metrics as km
model = models.Sequential()
model.add(keras.layers.Dense(1, activation="sigmoid", input_dim=2))
model.add(keras.layers.Dense(2, activation="softmax"))
# Calculate precision for the second label.
precision = km.binary_precision(label=1)
# Calculate recall for the first label.
recall = km.binary_recall(label=0)
model.compile(optimizer="sgd",
loss="binary_crossentropy",
metrics=[precision, recall])
Keras metrics package also supports metrics for categorical crossentropy and sparse categorical crossentropy:
import keras_metrics as km
c_precision = km.categorical_precision()
sc_precision = km.sparse_categorical_precision()
# ...
Tensorflow Keras
Tensorflow library provides the keras
package as parts of its API, in
order to use keras_metrics
with Tensorflow Keras, you are advised to
perform model training with initialized global variables:
import numpy as np
import keras_metrics as km
import tensorflow as tf
import tensorflow.keras as keras
model = keras.Sequential()
model.add(keras.layers.Dense(1, activation="softmax"))
model.compile(optimizer="sgd",
loss="binary_crossentropy",
metrics=[km.binary_true_positive()])
x = np.array([[0], [1], [0], [1]])
y = np.array([1, 0, 1, 0]
# Wrap model.fit into the session with global
# variables initialization.
with tf.Session() as s:
s.run(tf.global_variables_initializer())
model.fit(x=x, y=y)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file keras-metrics-1.1.0.tar.gz
.
File metadata
- Download URL: keras-metrics-1.1.0.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e65b8ace5f4d2100452d3109ef755870f1cfc00d13cb6d8eb96084aee2f5efa2 |
|
MD5 | 4eef07ad1a57a62f0577fbc030f7b8c6 |
|
BLAKE2b-256 | 3c3946e985d0718d692384c5feb006bb2dcb5846ce60b1ec94db323747b53c90 |
File details
Details for the file keras_metrics-1.1.0-py2.py3-none-any.whl
.
File metadata
- Download URL: keras_metrics-1.1.0-py2.py3-none-any.whl
- Upload date:
- Size: 5.6 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 07504def2a674b46e8907c2117ac12c7815c212889c5b31f8c015f7440d279dc |
|
MD5 | 15e20fc5d8a2263d68c1690fc446943e |
|
BLAKE2b-256 | 32c9a87420da8e73de944e63a8e9cdcfb1f03ca31a7c4cdcdbd45d2cdf13275a |