Skip to main content

Lazily loading mixed sequences using Keras Sequence, focused on multi-task models.

Project description

Pypi project Pypi total project downloads

Lazily loading mixed sequences using Keras Sequence, focused on multi-task models.

How do I install this package?

As usual, just download it using pip:

pip install keras_mixed_sequence

Usage examples

Example for traditional single-task models

First of all let’s create a simple single-task model:

from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential

model = Sequential([
    Dense(1, activation="relu")
])
model.compile(
    optimizer="nadam",
    loss="relu"
)

Then we proceed to load or otherwise create the training data. Here there will be listed, in the future, some custom Sequence objects that have been created for the purpose of being used alongside this library.

X = either_a_numpy_array_or_sequence_for_input
y = either_a_numpy_array_or_sequence_for_output

Now we combine the training data using the MixedSequence object.

from keras_mixed_sequence import MixedSequence

sequence = MixedSequence(
    X, y,
    batch_size=batch_size
)

Finally, we can train the model:

from multiprocessing import cpu_count

model.fit_generator(
    sequence,
    steps_per_epoch=sequence.steps_per_epoch,
    epochs=2,
    verbose=0,
    use_multiprocessing=True,
    workers=cpu_count(),
    shuffle=True
)

Example for multi-task models

First of all let’s create a simple multi-taks model:

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input

inputs = Input(shape=(10,))

output1 = Dense(
    units=10,
    activation="relu",
    name="output1"
)(inputs)
output2 = Dense(
    units=10,
    activation="relu",
    name="output2"
)(inputs)

model = Model(
    inputs=inputs,
    outputs=[output1, output2],
    name="my_model"
)

model.compile(
    optimizer="nadam",
    loss="MSE"
)

Then we proceed to load or otherwise create the training data. Here there will be listed, in the future, some custom Sequence objects that have been created for the purpose of being used alongside this library.

X = either_a_numpy_array_or_sequence_for_input
y1 = either_a_numpy_array_or_sequence_for_output1
y2 = either_a_numpy_array_or_sequence_for_output2

Now we combine the training data using the MixedSequence object.

from keras_mixed_sequence import MixedSequence

sequence = MixedSequence(
    x=X,
    y={
        "output1": y1,
        "output2": y2
    },
    batch_size=batch_size
)

Finally, we can train the model:

from multiprocessing import cpu_count

model.fit_generator(
    sequence,
    steps_per_epoch=sequence.steps_per_epoch,
    epochs=2,
    verbose=0,
    use_multiprocessing=True,
    workers=cpu_count(),
    shuffle=True
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras_mixed_sequence-1.0.29.tar.gz (7.1 kB view details)

Uploaded Source

File details

Details for the file keras_mixed_sequence-1.0.29.tar.gz.

File metadata

  • Download URL: keras_mixed_sequence-1.0.29.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.9

File hashes

Hashes for keras_mixed_sequence-1.0.29.tar.gz
Algorithm Hash digest
SHA256 4d49f4325988dccd9d1f6d1ea53e1fc0be8a4479545387f79db7d9245ed66e91
MD5 f284371a3bb9e306af1e5bed60dbd9d9
BLAKE2b-256 26970f66d9fa1579eaded44a0c572c8e2e9d2daa89f5d911d45f0307e8d2be73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page