Training of multi-label embeddings for k-shingled input sequences. for Tensorflow2/Keras
Project description
keras-multilabel-embedding
The package contains a TensorFlow2/Keras class to train an Embedding matrix for multi-label inputs, i.e. instead of 1 ID per token (one hot encoding), N IDs per token can be provided as model input.
An PyTorch implementation can be found here: https://github.com/ulf1/torch-multilabel-embedding (pip install torch-multilabel-embedding)
Usage
Multi-label embeddings with fixed number of labels
import keras_multilabel_embedding as tml
import tensorflow as tf
# a sequence of multi-label data points
x_ids = [[1, 2, 4], [0, 1, 2], [2, 1, 4], [3, 2, 1]]
x_ids = tf.constant(x_ids)
# initialize layer
layer = tml.MultiLabelEmbedding(
vocab_size=5, embed_size=300, random_state=42)
# predict
y = layer(x_ids)
Multi-label embeddings with variable number of labels
import keras_multilabel_embedding as tml
import tensorflow as tf
# a sequence of multi-label data points
x_ids = [[1, 2, 4], [0, 1, 2], [2, 1], [3]]
# initialize layer
layer = tml.MultiLabelEmbedding(
vocab_size=5, embed_size=300, random_state=42)
# predict
y = layer(x_ids)
Appendix
Installation
The keras-multilabel-embedding git repo is available as PyPi package
pip install keras-multilabel-embedding
pip install git+ssh://git@github.com/ulf1/keras-multilabel-embedding.git
Install a virtual environment
python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt --no-cache-dir
pip install -r requirements-dev.txt --no-cache-dir
pip install -r requirements-demo.txt --no-cache-dir
(If your git repo is stored in a folder with whitespaces, then don’t use the subfolder .venv. Use an absolute path without whitespaces.)
Python commands
Jupyter for the examples: jupyter lab
Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
Run Unit Tests: PYTHONPATH=. pytest
Publish
pandoc README.md --from markdown --to rst -s -o README.rst
python setup.py sdist
twine upload -r pypi dist/*
Clean up
find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv
Support
Please open an issue for support.
Contributing
Please contribute using Github Flow. Create a branch, add commits, and open a pull request.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file keras-multilabel-embedding-0.1.1.tar.gz
.
File metadata
- Download URL: keras-multilabel-embedding-0.1.1.tar.gz
- Upload date:
- Size: 8.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.8.2 requests/2.27.1 setuptools/60.9.3 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f701806463d76e0949568979388c60f59d2cce58517c93fb7e8c1d75b84018ed |
|
MD5 | 6e0b5dee545611e52cb5f700b8033555 |
|
BLAKE2b-256 | 68b11a192b5fed9be71b1d84c06a69ba64939029cd30511111e3a7816f067be9 |