Skip to main content

Training of multi-label embeddings for k-shingled input sequences. for Tensorflow2/Keras

Project description

PyPI version Total alerts Language grade: Python

keras-multilabel-embedding

The package contains a TensorFlow2/Keras class to train an Embedding matrix for multi-label inputs, i.e. instead of 1 ID per token (one hot encoding), N IDs per token can be provided as model input.

An PyTorch implementation can be found here: https://github.com/ulf1/torch-multilabel-embedding (pip install torch-multilabel-embedding)

Usage

Multi-label embeddings with fixed number of labels

import keras_multilabel_embedding as tml
import tensorflow as tf

# a sequence of multi-label data points
x_ids = [[1, 2, 4], [0, 1, 2], [2, 1, 4], [3, 2, 1]]
x_ids = tf.constant(x_ids)

# initialize layer
layer = tml.MultiLabelEmbedding(
    vocab_size=5, embed_size=300, random_state=42)

# predict
y = layer(x_ids)

Multi-label embeddings with variable number of labels

import keras_multilabel_embedding as tml
import tensorflow as tf

# a sequence of multi-label data points
x_ids = [[1, 2, 4], [0, 1, 2], [2, 1], [3]]

# initialize layer
layer = tml.MultiLabelEmbedding(
    vocab_size=5, embed_size=300, random_state=42)

# predict
y = layer(x_ids)

Appendix

Installation

The keras-multilabel-embedding git repo is available as PyPi package

pip install keras-multilabel-embedding
pip install git+ssh://git@github.com/ulf1/keras-multilabel-embedding.git

Install a virtual environment

python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt --no-cache-dir
pip install -r requirements-dev.txt --no-cache-dir
pip install -r requirements-demo.txt --no-cache-dir

(If your git repo is stored in a folder with whitespaces, then don’t use the subfolder .venv. Use an absolute path without whitespaces.)

Python commands

  • Jupyter for the examples: jupyter lab

  • Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')

  • Run Unit Tests: PYTHONPATH=. pytest

Publish

pandoc README.md --from markdown --to rst -s -o README.rst
python setup.py sdist
twine upload -r pypi dist/*

Clean up

find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv

Support

Please open an issue for support.

Contributing

Please contribute using Github Flow. Create a branch, add commits, and open a pull request.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-multilabel-embedding-0.1.1.tar.gz (8.2 kB view details)

Uploaded Source

File details

Details for the file keras-multilabel-embedding-0.1.1.tar.gz.

File metadata

  • Download URL: keras-multilabel-embedding-0.1.1.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.8.2 requests/2.27.1 setuptools/60.9.3 requests-toolbelt/0.9.1 tqdm/4.63.0 CPython/3.7.9

File hashes

Hashes for keras-multilabel-embedding-0.1.1.tar.gz
Algorithm Hash digest
SHA256 f701806463d76e0949568979388c60f59d2cce58517c93fb7e8c1d75b84018ed
MD5 6e0b5dee545611e52cb5f700b8033555
BLAKE2b-256 68b11a192b5fed9be71b1d84c06a69ba64939029cd30511111e3a7816f067be9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page