Skip to main content

Multi-backend Keras.

Project description

Keras 3: A new multi-backend Keras

Keras 3 is a new multi-backend implementation of the Keras API, with support for TensorFlow, JAX, and PyTorch.

Installation

Install with pip

Keras 3 is available on PyPI as keras. Note that Keras 2 remains available as the tf-keras package.

  1. Install keras:
pip install keras --upgrade
  1. Install backend package(s).

To use keras, you should also install the backend of choice: tensorflow, jax, or torch. Note that tensorflow is required for using certain Keras 3 features: certain preprocessing layers as well as tf.data pipelines.

Local installation

Minimal installation

Keras 3 is compatible with Linux and MacOS systems. For Windows users, we recommend using WSL2 to run Keras. To install a local development version:

  1. Install dependencies:
pip install -r requirements.txt
  1. Run installation command from the root directory.
python pip_build.py --install

Adding GPU support

The requirements.txt file will install a CPU-only version of TensorFlow, JAX, and PyTorch. For GPU support, we also provide a separate requirements-{backend}-cuda.txt for TensorFlow, JAX, and PyTorch. These install all CUDA dependencies via pip and expect a NVIDIA driver to be pre-installed. We recommend a clean python environment for each backend to avoid CUDA version mismatches. As an example, here is how to create a Jax GPU environment with conda:

conda create -y -n keras-jax python=3.10
conda activate keras-jax
pip install -r requirements-jax-cuda.txt
python pip_build.py --install

Configuring your backend

You can export the environment variable KERAS_BACKEND or you can edit your local config file at ~/.keras/keras.json to configure your backend. Available backend options are: "tensorflow", "jax", "torch". Example:

export KERAS_BACKEND="jax"

In Colab, you can do:

import os
os.environ["KERAS_BACKEND"] = "jax"

import keras

Note: The backend must be configured before importing keras, and the backend cannot be changed after the package has been imported.

Backwards compatibility

Keras 3 is intended to work as a drop-in replacement for tf.keras (when using the TensorFlow backend). Just take your existing tf.keras code, make sure that your calls to model.save() are using the up-to-date .keras format, and you're done.

If your tf.keras model does not include custom components, you can start running it on top of JAX or PyTorch immediately.

If it does include custom components (e.g. custom layers or a custom train_step()), it is usually possible to convert it to a backend-agnostic implementation in just a few minutes.

In addition, Keras models can consume datasets in any format, regardless of the backend you're using: you can train your models with your existing tf.data.Dataset pipelines or PyTorch DataLoaders.

Why use Keras 3?

  • Run your high-level Keras workflows on top of any framework -- benefiting at will from the advantages of each framework, e.g. the scalability and performance of JAX or the production ecosystem options of TensorFlow.
  • Write custom components (e.g. layers, models, metrics) that you can use in low-level workflows in any framework.
    • You can take a Keras model and train it in a training loop written from scratch in native TF, JAX, or PyTorch.
    • You can take a Keras model and use it as part of a PyTorch-native Module or as part of a JAX-native model function.
  • Make your ML code future-proof by avoiding framework lock-in.
  • As a PyTorch user: get access to power and usability of Keras, at last!
  • As a JAX user: get access to a fully-featured, battle-tested, well-documented modeling and training library.

Read more in the Keras 3 release announcement.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-nightly-3.0.2.dev2023122003.tar.gz (732.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file keras-nightly-3.0.2.dev2023122003.tar.gz.

File metadata

File hashes

Hashes for keras-nightly-3.0.2.dev2023122003.tar.gz
Algorithm Hash digest
SHA256 4eae8972b1b84b8b9d4779ddae66f738df896d3da3959c110230bd8de322366c
MD5 880afdb7452a16696736731e7dfe37f5
BLAKE2b-256 b6cfabdf76b16486d1b903defb41f576e9659d6b6b8655762d1b923e1ff9ba85

See more details on using hashes here.

File details

Details for the file keras_nightly-3.0.2.dev2023122003-py3-none-any.whl.

File metadata

File hashes

Hashes for keras_nightly-3.0.2.dev2023122003-py3-none-any.whl
Algorithm Hash digest
SHA256 340f0c92bc9394dddf6dd45028389068616c1ad0e002ebe5c9cf61ff5f43ef22
MD5 26c1a5511cedb527a22ce86f497c1aa3
BLAKE2b-256 92d8b0daf6a767c1cdc2607dac7b8284fb38bca55903e5c499124d7642193bf2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page