Unofficial implementation of ON-LSTM
Project description
Keras Ordered Neurons LSTM
Unofficial implementation of ON-LSTM.
Install
pip install keras-ordered-neurons
Usage
Basic
Same as LSTM
except that an extra argument chunk_size
should be given:
from keras.models import Sequential
from keras.layers import Embedding, Bidirectional, Dense
from keras_ordered_neurons import ONLSTM
model = Sequential()
model.add(Embedding(input_shape=(None,), input_dim=10, output_dim=100))
model.add(Bidirectional(ONLSTM(units=50, chunk_size=5)))
model.add(Dense(units=2, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
model.summary()
DropConnect
Set recurrent_dropconnect
to a non-zero value to enable drop-connect for recurrent weights:
from keras_ordered_neurons import ONLSTM
ONLSTM(units=50, chunk_size=5, recurrent_dropconnect=0.2)
Expected Split Points
Set return_splits
to True
if you want to know the expected split points of master forget gate and master input gate.
from keras.models import Model
from keras.layers import Input, Embedding
from keras_ordered_neurons import ONLSTM
inputs = Input(shape=(None,))
embed = Embedding(input_dim=10, output_dim=100)(inputs)
outputs, splits = ONLSTM(units=50, chunk_size=5, return_sequences=True, return_splits=True)(embed)
model = Model(inputs=inputs, outputs=splits)
model.compile(optimizer='adam', loss='mse')
model.summary(line_length=120)
tf.keras
Add TF_KERAS=1
to environment variables if you are using tensorflow.python.keras
.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
keras-on-lstm-0.8.0.tar.gz
(9.8 kB
view details)
File details
Details for the file keras-on-lstm-0.8.0.tar.gz
.
File metadata
- Download URL: keras-on-lstm-0.8.0.tar.gz
- Upload date:
- Size: 9.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.7.1 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b42eac9836765e8a96c5e3f8a939fc7552ec4f6125efb438df273e0abe61eda5 |
|
MD5 | 2aec39346fe3c89a5f1587c42215e2db |
|
BLAKE2b-256 | 8c26166451b98706b778d47146c46fe51ee5be3a3982663cb4bf44adeea95204 |