Skip to main content

Unofficial implementation of ON-LSTM

Project description

Keras Ordered Neurons LSTM

Version

[中文|English]

Unofficial implementation of ON-LSTM.

Install

pip install keras-ordered-neurons

Usage

Basic

Same as LSTM except that an extra argument chunk_size should be given:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, Bidirectional, Dense

from keras_ordered_neurons import ONLSTM

model = Sequential()
model.add(Embedding(input_shape=(None,), input_dim=10, output_dim=100))
model.add(Bidirectional(ONLSTM(units=50, chunk_size=5)))
model.add(Dense(units=2, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
model.summary()

DropConnect

Set recurrent_dropconnect to a non-zero value to enable drop-connect for recurrent weights:

from keras_ordered_neurons import ONLSTM

ONLSTM(units=50, chunk_size=5, recurrent_dropconnect=0.2)

Expected Split Points

Set return_splits to True if you want to know the expected split points of master forget gate and master input gate.

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Embedding

from keras_ordered_neurons import ONLSTM

inputs = Input(shape=(None,))
embed = Embedding(input_dim=10, output_dim=100)(inputs)
outputs, splits = ONLSTM(units=50, chunk_size=5, return_sequences=True, return_splits=True)(embed)
model = Model(inputs=inputs, outputs=splits)
model.compile(optimizer='adam', loss='mse')
model.summary(line_length=120)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-ordered-neurons-0.10.0.tar.gz (10.2 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page