Skip to main content

Unofficial implementation of ON-LSTM

Project description

Keras Ordered Neurons LSTM

Version

[中文|English]

Unofficial implementation of ON-LSTM.

Install

pip install keras-ordered-neurons

Usage

Basic

Same as LSTM except that an extra argument chunk_size should be given:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, Bidirectional, Dense

from keras_ordered_neurons import ONLSTM

model = Sequential()
model.add(Embedding(input_shape=(None,), input_dim=10, output_dim=100))
model.add(Bidirectional(ONLSTM(units=50, chunk_size=5)))
model.add(Dense(units=2, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
model.summary()

DropConnect

Set recurrent_dropconnect to a non-zero value to enable drop-connect for recurrent weights:

from keras_ordered_neurons import ONLSTM

ONLSTM(units=50, chunk_size=5, recurrent_dropconnect=0.2)

Expected Split Points

Set return_splits to True if you want to know the expected split points of master forget gate and master input gate.

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Embedding

from keras_ordered_neurons import ONLSTM

inputs = Input(shape=(None,))
embed = Embedding(input_dim=10, output_dim=100)(inputs)
outputs, splits = ONLSTM(units=50, chunk_size=5, return_sequences=True, return_splits=True)(embed)
model = Model(inputs=inputs, outputs=splits)
model.compile(optimizer='adam', loss='mse')
model.summary(line_length=120)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-ordered-neurons-0.10.0.tar.gz (10.2 kB view details)

Uploaded Source

File details

Details for the file keras-ordered-neurons-0.10.0.tar.gz.

File metadata

  • Download URL: keras-ordered-neurons-0.10.0.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for keras-ordered-neurons-0.10.0.tar.gz
Algorithm Hash digest
SHA256 40c4255cb1b583fcafeeef63e617adead545df674b023e5e7a2d4c53c7f36170
MD5 f83031d3ece94d6e798ecd52c22c4534
BLAKE2b-256 9e08ce12de80e01b45d19455f3281d7289c9a891ff8abfa09b3d243854f93c9d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page