Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

Unofficial implementation of ON-LSTM

Project description

Keras Ordered Neurons LSTM

Travis Coverage Version Downloads 996.ICU

[中文|English]

Unofficial implementation of ON-LSTM.

Install

pip install keras-ordered-neurons

Usage

Basic

Same as LSTM except that an extra argument chunk_size should be given:

from keras.models import Sequential
from keras.layers import Embedding, Bidirectional, Dense
from keras_ordered_neurons import ONLSTM

model = Sequential()
model.add(Embedding(input_shape=(None,), input_dim=10, output_dim=100))
model.add(Bidirectional(ONLSTM(units=50, chunk_size=5)))
model.add(Dense(units=2, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
model.summary()

DropConnect

Set recurrent_dropconnect to a non-zero value to enable drop-connect for recurrent weights:

from keras_ordered_neurons import ONLSTM

ONLSTM(units=50, chunk_size=5, recurrent_dropconnect=0.2)

Expected Split Points

Set return_splits to True if you want to know the expected split points of master forget gate and master input gate.

from keras.models import Model
from keras.layers import Input, Embedding
from keras_ordered_neurons import ONLSTM

inputs = Input(shape=(None,))
embed = Embedding(input_dim=10, output_dim=100)(inputs)
outputs, splits = ONLSTM(units=50, chunk_size=5, return_sequences=True, return_splits=True)(embed)
model = Model(inputs=inputs, outputs=splits)
model.compile(optimizer='adam', loss='mse')
model.summary(line_length=120)

tf.keras

Add TF_KERAS=1 to environment variables if you are using tensorflow.python.keras.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for keras-ordered-neurons, version 0.8.0
Filename, size File type Python version Upload date Hashes
Filename, size keras-ordered-neurons-0.8.0.tar.gz (9.7 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page