Skip to main content

A wrapper layer for splitting and accumulating sequential data

Project description

Keras Piecewise

Travis Coverage PyPI

A wrapper layer for splitting and accumulating sequential data.

Install

pip install keras-piecewise-pooling

Usage

Piecewise

import keras
import keras.backend as K
import numpy as np
from keras_piecewise import Piecewise


class AvePool1D(keras.layers.Layer):

    def __init__(self, **kwargs):
        super(AvePool1D, self).__init__(**kwargs)

    def call(self, inputs):
        return K.sum(inputs, axis=1) / K.cast(K.shape(inputs)[1], K.floatx())

    def compute_output_shape(self, input_shape):
        return (input_shape[0],) + input_shape[2:]


data = [[[1, 3, 2, 5], [7, 9, 2, 3], [0, 1, 7, 2], [4, 7, 2, 5]]]
positions = [[1, 3, 4]]
piece_num = len(positions[0])

data_input = keras.layers.Input(shape=(None, None))
position_input = keras.layers.Input(shape=(piece_num,), dtype='int32')
pool_layer = Piecewise(AvePool1D())([data_input, position_input])
model = keras.models.Model(inputs=[data_input, position_input], outputs=pool_layer)
model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.mean_squared_error)
model.summary()

print(model.predict([np.asarray(data), np.asarray(positions)]).tolist())
# The result will be:
# [[
#     [1.0, 3.0, 2.0, 5.0],
#     [3.5, 5.0, 4.5, 2.5],
#     [4.0, 7.0, 2.0, 5.0],
# ]]

The default value for argument pos_type is Piecewise.POS_TYPE_SEGMENTS, which means splitting the input sequences with increasing positions. When pos_type is Piecewise.POS_TYPE_PAIRS, every two positions represent the piece to be extracted.

Piecewise2D

import keras
import keras.backend as K
import numpy as np
from keras_piecewise import Piecewise2D


class MaxPool2D(keras.layers.Layer):
    def __init__(self, **kwargs):
        super(MaxPool2D, self).__init__(**kwargs)

    def call(self, inputs):
        return K.max(K.max(inputs, axis=1), axis=1)

    def compute_output_shape(self, input_shape):
        return (input_shape[0],) + input_shape[3:]


data = [
    [
        [1, 3, 5, 2],
        [2, 5, 6, 1],
        [7, 1, 5, 3],
        [7, 2, 2, 4],
    ],
    [
        [1, 3, 5, 2],
        [2, 5, 6, 1],
        [7, 1, 5, 3],
        [7, 2, 2, 4],
    ],
]
rows = [
    [2, 4],
    [3, 4],
]
cols = [
    [1, 2, 4],
    [1, 3, 4],
]
row_num = len(rows[0])
col_num = len(cols[0])

data_input = keras.layers.Input(shape=(None, None))
row_input = keras.layers.Input(shape=(row_num,))
col_input = keras.layers.Input(shape=(col_num,))
pool_layer = Piecewise2D(
    layer=MaxPool2D(),
)([data_input, row_input, col_input])
model = keras.models.Model(inputs=[data_input, row_input, col_input], outputs=pool_layer)
model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.mean_squared_error)
model.summary()

print(model.predict([np.asarray(data), np.asarray(rows), np.asarray(cols)]).tolist())
# The result will be:
# [
#     [
#         [2.0, 5.0, 6.0],
#         [7.0, 2.0, 5.0],
#     ],
#     [
#         [7.0, 6.0, 3.0],
#         [7.0, 2.0, 4.0],
#     ],
# ]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-piecewise-0.14.0.tar.gz (5.7 kB view details)

Uploaded Source

File details

Details for the file keras-piecewise-0.14.0.tar.gz.

File metadata

  • Download URL: keras-piecewise-0.14.0.tar.gz
  • Upload date:
  • Size: 5.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for keras-piecewise-0.14.0.tar.gz
Algorithm Hash digest
SHA256 f5eafff966a0d1585c1de655040111d6ef78006fd05d7a2bb1b52ed01a6a6ac6
MD5 69a51c5572e26de142f4a0186c289d5e
BLAKE2b-256 96d99890f627b921867256b900986e60d3e29b15278b91bff165edfff7bd0553

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page