Skip to main content

A wrapper layer for splitting and accumulating sequential data

Project description

Keras Piecewise

Travis Coverage PyPI

A wrapper layer for splitting and accumulating sequential data.

Install

pip install keras-piecewise-pooling

Usage

Piecewise

import keras
import keras.backend as K
import numpy as np
from keras_piecewise import Piecewise


class AvePool1D(keras.layers.Layer):

    def __init__(self, **kwargs):
        super(AvePool1D, self).__init__(**kwargs)

    def call(self, inputs):
        return K.sum(inputs, axis=1) / K.cast(K.shape(inputs)[1], K.floatx())

    def compute_output_shape(self, input_shape):
        return (input_shape[0],) + input_shape[2:]


data = [[[1, 3, 2, 5], [7, 9, 2, 3], [0, 1, 7, 2], [4, 7, 2, 5]]]
positions = [[1, 3, 4]]
piece_num = len(positions[0])

data_input = keras.layers.Input(shape=(None, None))
position_input = keras.layers.Input(shape=(piece_num,), dtype='int32')
pool_layer = Piecewise(AvePool1D())([data_input, position_input])
model = keras.models.Model(inputs=[data_input, position_input], outputs=pool_layer)
model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.mean_squared_error)
model.summary()

print(model.predict([np.asarray(data), np.asarray(positions)]).tolist())
# The result will be:
# [[
#     [1.0, 3.0, 2.0, 5.0],
#     [3.5, 5.0, 4.5, 2.5],
#     [4.0, 7.0, 2.0, 5.0],
# ]]

The default value for argument pos_type is Piecewise.POS_TYPE_SEGMENTS, which means splitting the input sequences with increasing positions. When pos_type is Piecewise.POS_TYPE_PAIRS, every two positions represent the piece to be extracted.

Piecewise2D

import keras
import keras.backend as K
import numpy as np
from keras_piecewise import Piecewise2D


class MaxPool2D(keras.layers.Layer):
    def __init__(self, **kwargs):
        super(MaxPool2D, self).__init__(**kwargs)

    def call(self, inputs):
        return K.max(K.max(inputs, axis=1), axis=1)

    def compute_output_shape(self, input_shape):
        return (input_shape[0],) + input_shape[3:]


data = [
    [
        [1, 3, 5, 2],
        [2, 5, 6, 1],
        [7, 1, 5, 3],
        [7, 2, 2, 4],
    ],
    [
        [1, 3, 5, 2],
        [2, 5, 6, 1],
        [7, 1, 5, 3],
        [7, 2, 2, 4],
    ],
]
rows = [
    [2, 4],
    [3, 4],
]
cols = [
    [1, 2, 4],
    [1, 3, 4],
]
row_num = len(rows[0])
col_num = len(cols[0])

data_input = keras.layers.Input(shape=(None, None))
row_input = keras.layers.Input(shape=(row_num,))
col_input = keras.layers.Input(shape=(col_num,))
pool_layer = Piecewise2D(
    layer=MaxPool2D(),
)([data_input, row_input, col_input])
model = keras.models.Model(inputs=[data_input, row_input, col_input], outputs=pool_layer)
model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.mean_squared_error)
model.summary()

print(model.predict([np.asarray(data), np.asarray(rows), np.asarray(cols)]).tolist())
# The result will be:
# [
#     [
#         [2.0, 5.0, 6.0],
#         [7.0, 2.0, 5.0],
#     ],
#     [
#         [7.0, 6.0, 3.0],
#         [7.0, 2.0, 4.0],
#     ],
# ]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-piecewise-0.14.0.tar.gz (5.7 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page