Skip to main content
Join the official Python Developers Survey 2018 and win valuable prizes: Start the survey!

A wrapper layer for splitting and accumulating sequential data

Project description

Travis Coverage PyPI

A wrapper layer for splitting and accumulating sequential data.

Install

pip install keras-piecewise-pooling

Usage

Piecewise

import keras
import keras.backend as K
import numpy as np
from keras_piecewise import Piecewise


class AvePool1D(keras.layers.Layer):

    def __init__(self, **kwargs):
        super(AvePool1D, self).__init__(**kwargs)

    def call(self, inputs):
        return K.sum(inputs, axis=1) / K.cast(K.shape(inputs)[1], K.floatx())

    def compute_output_shape(self, input_shape):
        return (input_shape[0],) + input_shape[2:]


data = [[[1, 3, 2, 5], [7, 9, 2, 3], [0, 1, 7, 2], [4, 7, 2, 5]]]
positions = [[1, 3, 4]]
piece_num = len(positions[0])

data_input = keras.layers.Input(shape=(None, None))
position_input = keras.layers.Input(shape=(piece_num,), dtype='int32')
pool_layer = Piecewise(AvePool1D())([data_input, position_input])
model = keras.models.Model(inputs=[data_input, position_input], outputs=pool_layer)
model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.mean_squared_error)
model.summary()

print(model.predict([np.asarray(data), np.asarray(positions)]).tolist())
# The result will be:
# [[
#     [1.0, 3.0, 2.0, 5.0],
#     [3.5, 5.0, 4.5, 2.5],
#     [4.0, 7.0, 2.0, 5.0],
# ]]

The default value for argument pos_type is Piecewise.POS_TYPE_SEGMENTS, which means splitting the input sequences with increasing positions. When pos_type is Piecewise.POS_TYPE_PAIRS, every two positions represent the piece to be extracted.

Piecewise2D

import keras
import keras.backend as K
import numpy as np
from keras_piecewise import Piecewise2D


class MaxPool2D(keras.layers.Layer):
    def __init__(self, **kwargs):
        super(MaxPool2D, self).__init__(**kwargs)

    def call(self, inputs):
        return K.max(K.max(inputs, axis=1), axis=1)

    def compute_output_shape(self, input_shape):
        return (input_shape[0],) + input_shape[3:]


data = [
    [
        [1, 3, 5, 2],
        [2, 5, 6, 1],
        [7, 1, 5, 3],
        [7, 2, 2, 4],
    ],
    [
        [1, 3, 5, 2],
        [2, 5, 6, 1],
        [7, 1, 5, 3],
        [7, 2, 2, 4],
    ],
]
rows = [
    [2, 4],
    [3, 4],
]
cols = [
    [1, 2, 4],
    [1, 3, 4],
]
row_num = len(rows[0])
col_num = len(cols[0])

data_input = keras.layers.Input(shape=(None, None))
row_input = keras.layers.Input(shape=(row_num,))
col_input = keras.layers.Input(shape=(col_num,))
pool_layer = Piecewise2D(
    layer=MaxPool2D(),
)([data_input, row_input, col_input])
model = keras.models.Model(inputs=[data_input, row_input, col_input], outputs=pool_layer)
model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.mean_squared_error)
model.summary()

print(model.predict([np.asarray(data), np.asarray(rows), np.asarray(cols)]).tolist())
# The result will be:
# [
#     [
#         [2.0, 5.0, 6.0],
#         [7.0, 2.0, 5.0],
#     ],
#     [
#         [7.0, 6.0, 3.0],
#         [7.0, 2.0, 4.0],
#     ],
# ]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
keras-piecewise-0.10.tar.gz (3.7 kB) Copy SHA256 hash SHA256 Source None Sep 29, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page