Skip to main content

Solving quadratic optimization problems with Keras.

Project description

PyPI version PyPi downloads DOI

keras-quadopt: Solving Constrained Quadratic Optimization Problems with Reverse Automatic Differentation (Keras/TF2)

Solving quadratic optimization problems with resource constraints and upper boundaries using TF2/Keras.

Usage

import tensorflow as tf
import keras_quadopt as kqp
import time

# goodness scores
good = tf.constant([.51, .53, .55, .57])

# similarity matrices
simi_1 = tf.constant([
    [1, .9, .8, .7],
    [.9, 1, .6, .5],
    [.8, .6, 1, .4],
    [.7, .5, .4, 1],
])

simi_2 = tf.constant([
    [1, .7, .8, .3],
    [.7, 1, .4, .2],
    [.8, .4, 1, .6],
    [.3, .2, .6, 1],
])

# preference parameters
lam = 0.4
beta_1 = 0.25
beta_2 = 0.75

# compute weights
simi = kqp.aggregate_matrices(simi_1, beta_1, simi_2, beta_2)

start = time.time()
wbest, fbest = kqp.get_weights(good, simi, lam)
print(f"elapsed: {time.time() - start}")

Appendix

Installation

The keras-quadopt git repo is available as PyPi package

pip install keras-quadopt
pip install git+ssh://git@github.com/ulf1/keras-quadopt.git

Install a virtual environment

python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt --no-cache-dir
pip install -r requirements-dev.txt --no-cache-dir

(If your git repo is stored in a folder with whitespaces, then don't use the subfolder .venv. Use an absolute path without whitespaces.)

Python commands

  • Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
  • Run Unit Tests: PYTHONPATH=. pytest

Publish

python setup.py sdist 
twine upload -r pypi dist/*

Clean up

find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv

Support

Please open an issue for support.

Contributing

Please contribute using Github Flow. Create a branch, add commits, and open a pull request.

Acknowledgements

The "Evidence" project was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 433249742 (GU 798/27-1; GE 1119/11-1).

Maintenance

  • till 31.Aug.2023 (v0.1.0) the code repository was maintained within the DFG project 433249742
  • since 01.Sep.2023 (v0.2.0) the code repository is maintained by Ulf Hamster.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-quadopt-0.2.0.tar.gz (8.6 kB view details)

Uploaded Source

File details

Details for the file keras-quadopt-0.2.0.tar.gz.

File metadata

  • Download URL: keras-quadopt-0.2.0.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.9.6 requests/2.31.0 setuptools/59.6.0 requests-toolbelt/1.0.0 tqdm/4.65.0 CPython/3.10.6

File hashes

Hashes for keras-quadopt-0.2.0.tar.gz
Algorithm Hash digest
SHA256 b19950ba144ba73a8c146e8ab36ceeab901033c2e50ef7752fef5637c328f885
MD5 dce4977a4487cfdb57b0dfbd6971786f
BLAKE2b-256 c6177322cbd5feac64a05af556131769bac01ef10a563e60d099ee12ee052e33

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page