Skip to main content

sparsity patterns for tensorflow.sparse

Project description



Tensorflow2/Keras wrapper for sparsity-pattern package.


The keras-sparsity-pattern git repo is available as PyPi package

pip install keras-sparsity-pattern
pip install git+ssh://


The block-diagonal pattern for tensorflow

import keras_sparsity_pattern
import tensorflow as tf

n_rows, n_cols = 10, 12
mat_pattern = keras_sparsity_pattern.get('block', min(n_rows, n_cols), block_sizes=[3, 1, 2])
mat_values = range(1, len(mat_pattern)+1)

mat = tf.sparse.SparseTensor(
    dense_shape=(n_rows, n_cols),


Please, check the howto.ipynb of the sparsity-pattern package for more sparsity patterns. The .get method works exactly the same.


Install a virtual environment

python3.6 -m venv .venv
source .venv/bin/activate
pip3 install --upgrade pip
pip3 install -r requirements.txt

(If your git repo is stored in a folder with whitespaces, then don't use the subfolder .venv. Use an absolute path without whitespaces.)

Python commands

  • Jupyter for the examples: jupyter lab
  • Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
  • Run Unit Tests: pytest
  • Upload to PyPi with twine: python sdist && twine upload -r pypi dist/*

Clean up

find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv


Please open an issue for support.


Please contribute using Github Flow. Create a branch, add commits, and open a pull request.

Project details

Release history Release notifications

This version


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for keras-sparsity-pattern, version 0.1.0
Filename, size File type Python version Upload date Hashes
Filename, size keras-sparsity-pattern-0.1.0.tar.gz (2.8 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page