sparsity patterns for tensorflow.sparse
Project description
keras-sparsity-pattern
Tensorflow2/Keras wrapper for sparsity-pattern
package.
Installation
The keras-sparsity-pattern
git repo is available as PyPi package
pip install keras-sparsity-pattern
pip install git+ssh://git@github.com/ulf1/keras-sparsity-pattern.git
Usage
The block
-diagonal pattern for tensorflow
import keras_sparsity_pattern
import tensorflow as tf
n_rows, n_cols = 10, 12
mat_pattern = keras_sparsity_pattern.get('block', min(n_rows, n_cols), block_sizes=[3, 1, 2])
mat_values = range(1, len(mat_pattern)+1)
mat = tf.sparse.SparseTensor(
dense_shape=(n_rows, n_cols),
indices=mat_pattern,
values=mat_values)
print(tf.sparse.to_dense(mat))
Please, check the howto.ipynb of the sparsity-pattern package for more sparsity patterns.
The .get
method works exactly the same.
Appendix
Install a virtual environment
python3.6 -m venv .venv
source .venv/bin/activate
pip3 install --upgrade pip
pip3 install -r requirements.txt
(If your git repo is stored in a folder with whitespaces, then don't use the subfolder .venv
. Use an absolute path without whitespaces.)
Python commands
- Jupyter for the examples:
jupyter lab
- Check syntax:
flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
- Run Unit Tests:
pytest
- Upload to PyPi with twine:
python setup.py sdist && twine upload -r pypi dist/*
Clean up
find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv
Support
Please open an issue for support.
Contributing
Please contribute using Github Flow. Create a branch, add commits, and open a pull request.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file keras-sparsity-pattern-0.1.0.tar.gz
.
File metadata
- Download URL: keras-sparsity-pattern-0.1.0.tar.gz
- Upload date:
- Size: 2.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.3.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f3f6cfff7c13c1d2395d935dfbb3f209c896b5fa85d1083ede4136b91489ea9 |
|
MD5 | f39d6b985f023537e7cdd5836eee4850 |
|
BLAKE2b-256 | cc736476941e594ea7e2b7d6ef87f85b4b09193e97ddf3df64afc2d5850ed354 |