A wrapper that slows down the updates of trainable weights
Project description
Keras Successive Regularization Wrapper
A wrapper that slows down the updates of trainable weights.
Install
pip install keras-succ-reg-wrapper
Usage
import keras
from keras_succ_reg_wrapper import SuccReg
input_layer = keras.layers.Input(shape=(1,), name='Input')
dense_layer = SuccReg(
layer=keras.layers.Dense(units=1, name='Dense'),
regularizer=keras.regularizers.L1L2(l2=1e-3), # Any regularizer
name='Output',
)(input_layer)
model = keras.models.Model(inputs=input_layer, outputs=dense_layer)
model.compile(optimizer='adam', loss='mse')
model.summary()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file keras-succ-reg-wrapper-0.4.0.tar.gz
.
File metadata
- Download URL: keras-succ-reg-wrapper-0.4.0.tar.gz
- Upload date:
- Size: 2.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.7.1 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f95e5da1fd1b1f59a8e800dbec4db7582d99abcdcfbde613d4454ec50a844ce9 |
|
MD5 | c7978ce087645c9d45e05ecac6be691a |
|
BLAKE2b-256 | 78317a2847ddf48af8c3aff91b926c2b22c9fb2cb3db12afb92994eeae0195fd |