Skip to main content

Keras models with TQDM progress bars in Jupyter notebooks

Project description

Keras integration with TQDM progress bars.

  • Keras is an awesome machine learning library for Theano or TensorFlow.

  • TQDM is a progress bar library with good support for nested loops and Jupyter/IPython notebooks.

Key features

  • TQDM supports nested progress bars. If you have Keras fit and predict loops within an outer TQDM loop, the nested loops will display properly.

  • TQDM supports Jupyter/IPython notebooks.

  • TQDM looks great!

TQDMNotebookCallback with leave_inner=False (default)

Keras TQDM leave_inner=False

TQDMNotebookCallback with leave_inner=True

Keras TQDM leave_inner=True

TQDMCallback for command-line scripts

Keras TQDM CLI

Installation

Stable release

pip install keras-tqdm

Development release

pip install git+https://github.com/bstriner/keras-tqdm.git --upgrade --no-deps

Development mode (changes to source take effect without reinstalling)

git clone https://github.com/bstriner/keras-tqdm.git
cd keras-tqdm
python setup.py develop

Basic usage

It’s very easy to use Keras TQDM. The only required change is to remove default messages (verbose=0) and add a callback to model.fit. The rest happens automatically! For Jupyter Notebook required code modification is as simple as:

from keras_tqdm import TQDMNotebookCallback
# keras, model definition...
model.fit(X_train, Y_train, verbose=0, callbacks=[TQDMNotebookCallback()])

For plain text mode (e.g. for Python run from command line)

from keras_tqdm import TQDMCallback
# keras, model definition...
model.fit(X_train, Y_train, verbose=0, callbacks=[TQDMCallback()])

Advanced usage

Use keras_tqdm to utilize TQDM progress bars for Keras fit loops. keras_tqdm loops can be nested inside TQDM loops to display nested progress bars (although you can use them inside ordinary for loops as well). Set verbose=0 to suppress the default progress bar.

from keras_tqdm import TQDMCallback
from tqdm import tqdm
for model in tqdm(models, desc="Training several models"):
    model.fit(x, y, verbose=0, callbacks=[TQDMCallback()])

For IPython and Jupyter notebook TQDMNotebookCallback instead of TQDMCallback. Use tqdm_notebook in your own code instead of tqdm. Formatting is controlled by python format strings. The default metric_format is "{name}: {value:0.3f}". For example, use TQDMCallback(metric_format="{name}: {value:0.6f}") for 6 decimal points or {name}: {value:e} for scientific notation.

Questions?

Please feel free to submit PRs and issues. Comments, questions, and requests are welcome. If you need more control, subclass TQDMCallback and override the tqdm function.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras_tqdm-2.0.1.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

keras_tqdm-2.0.1-py2.py3-none-any.whl (7.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file keras_tqdm-2.0.1.tar.gz.

File metadata

  • Download URL: keras_tqdm-2.0.1.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for keras_tqdm-2.0.1.tar.gz
Algorithm Hash digest
SHA256 d5deb3bd201a66285fb796f240e6fb52ecb76fe6253bb72d6bb832abebe59f47
MD5 47d863c1e0cf5ab0c71accd9f025c35c
BLAKE2b-256 ce02bf464481236468315d4b2ccc1e3abd95602fba98508c68e38259d7483853

See more details on using hashes here.

File details

Details for the file keras_tqdm-2.0.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for keras_tqdm-2.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3f5b093d49852fc4c9bfeffdc17c8f3eb98b1e530dbd8cc407cf37d197a1dc3b
MD5 6e459a57182b4db8b072d77e272aee80
BLAKE2b-256 165cac63c65b79a895b8994474de2ad4d5b66ac0796b8903d60cfea3f8308d5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page