Skip to main content

Utility functions for Keras/Tensorflow2.

Project description

PyPI version keras-tweaks Total alerts Language grade: Python

keras-tweaks

Utility functions for Keras/Tensorflow2.

Installation

The keras-tweaks git repo is available as PyPi package

pip install keras-tweaks
# pip install git+ssh://git@github.com/ulf1/keras-tweaks.git

Usage

ID Sequence to Bool Mask

import tensorflow as tf
from keras_tweaks import idseqs_to_mask

idseqs = [[1, 1, 0, 0, 2, 2, 3], [1, 3, 2, 1, 0, 0, 2]]

masks = idseqs_to_mask(
    idseqs, n_seqlen=6, ignore=[1],
    dtype=tf.uint8, dense=False)

print(tf.sparse.to_dense(masks))

See example

Multiply row vector with sparse matrix

Please check the notebooks for an example and an explanation

import tensorflow as tf
from keras_tweaks import dense_sparse_matmul

# 1x3 row vector
h = tf.constant([1., 2., 3.])

# 3x4 sparse matrix
W = tf.sparse.SparseTensor(
    indices=([0, 1], [1, 1], [1, 2], [2, 0], [2, 2], [0, 3], [2, 3]),
    values=[1., 2., 3., 4., 5., 6., 7.],
    dense_shape=(3, 4))
W = tf.sparse.reorder(W)

# result is a 1x4 row vector
net = dense_sparse_matmul(h, W)

Sparsity Patterns for Keras

The block-diagonal pattern for tensorflow

import tensorflow as tf
from keras_tweaks import get_sparsity_pattern

n_rows, n_cols = 10, 12
mat_pattern = get_sparsity_pattern('block', min(n_rows, n_cols), block_sizes=[3, 1, 2])
mat_values = range(1, len(mat_pattern)+1)

mat = tf.sparse.SparseTensor(
    dense_shape=(n_rows, n_cols),
    indices=mat_pattern,
    values=mat_values)

print(tf.sparse.to_dense(mat))

Please, check the howto.ipynb of the sparsity-pattern package for more sparsity patterns. The keras_tweaks.get_sparsity_pattern method works exactly the same.

Appendix

Install a virtual environment

python3 -m venv .venv
source .venv/bin/activate
pip3 install --upgrade pip
pip3 install -r requirements.txt --no-cache-dir
pip3 install -r requirements-dev.txt --no-cache-dir
pip3 install -r requirements-demo.txt --no-cache-dir

(If your git repo is stored in a folder with whitespaces, then don’t use the subfolder .venv. Use an absolute path without whitespaces.)

Python commands

  • Jupyter for the examples: jupyter lab

  • Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')

  • Run Unit Tests: pytest

Publish

pandoc README.md --from markdown --to rst -s -o README.rst
python setup.py sdist
twine upload -r pypi dist/*

Clean up

find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv

License and citation

  • The function keras_tweaks.get_sparsity_pattern is a wrapper for the python package sparsity-pattern what is also licensed under Apache License 2.0. If you are using the function, and like to cite the sparsity-pattern package, then use the DOI: 10.5281/zenodo.4357290

Support

Please open an issue for support.

Contributing

Please contribute using Github Flow. Create a branch, add commits, and open a pull request.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras-tweaks-0.4.2.tar.gz (12.5 kB view details)

Uploaded Source

File details

Details for the file keras-tweaks-0.4.2.tar.gz.

File metadata

  • Download URL: keras-tweaks-0.4.2.tar.gz
  • Upload date:
  • Size: 12.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for keras-tweaks-0.4.2.tar.gz
Algorithm Hash digest
SHA256 2423796b4d175f41e27d18ac78281e214287bd464296c089c9be8c3ad6c1c1bc
MD5 3d6bc4547e19f696bc0247e33c5f08ff
BLAKE2b-256 7be9f0c5140d0aaf4215a2bf76ccf1b57bc65a0ed58bd9d7c1ee64b0847ccc55

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page