Utility functions for Keras/Tensorflow2.
Project description
keras-tweaks
Utility functions for Keras/Tensorflow2.
Installation
The keras-tweaks git repo is available as PyPi package
pip install keras-tweaks
# pip install git+ssh://git@github.com/ulf1/keras-tweaks.git
Usage
ID Sequence to Bool Mask
import tensorflow as tf
from keras_tweaks import idseqs_to_mask
idseqs = [[1, 1, 0, 0, 2, 2, 3], [1, 3, 2, 1, 0, 0, 2]]
masks = idseqs_to_mask(
idseqs, n_seqlen=6, ignore=[1],
dtype=tf.uint8, dense=False)
print(tf.sparse.to_dense(masks))
See example
Multiply row vector with sparse matrix
Please check the notebooks for an example and an explanation
import tensorflow as tf
from keras_tweaks import dense_sparse_matmul
# 1x3 row vector
h = tf.constant([1., 2., 3.])
# 3x4 sparse matrix
W = tf.sparse.SparseTensor(
indices=([0, 1], [1, 1], [1, 2], [2, 0], [2, 2], [0, 3], [2, 3]),
values=[1., 2., 3., 4., 5., 6., 7.],
dense_shape=(3, 4))
W = tf.sparse.reorder(W)
# result is a 1x4 row vector
net = dense_sparse_matmul(h, W)
Sparsity Patterns for Keras
The block-diagonal pattern for tensorflow
import tensorflow as tf
from keras_tweaks import get_sparsity_pattern
n_rows, n_cols = 10, 12
mat_pattern = get_sparsity_pattern('block', min(n_rows, n_cols), block_sizes=[3, 1, 2])
mat_values = range(1, len(mat_pattern)+1)
mat = tf.sparse.SparseTensor(
dense_shape=(n_rows, n_cols),
indices=mat_pattern,
values=mat_values)
print(tf.sparse.to_dense(mat))
Please, check the howto.ipynb of the sparsity-pattern package for more sparsity patterns. The keras_tweaks.get_sparsity_pattern method works exactly the same.
Appendix
Install a virtual environment
python3 -m venv .venv source .venv/bin/activate pip3 install --upgrade pip pip3 install -r requirements.txt --no-cache-dir pip3 install -r requirements-dev.txt --no-cache-dir pip3 install -r requirements-demo.txt --no-cache-dir
(If your git repo is stored in a folder with whitespaces, then don’t use the subfolder .venv. Use an absolute path without whitespaces.)
Python commands
Jupyter for the examples: jupyter lab
Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
Run Unit Tests: pytest
Publish
pandoc README.md --from markdown --to rst -s -o README.rst
python setup.py sdist
twine upload -r pypi dist/*
Clean up
find . -type f -name "*.pyc" | xargs rm find . -type d -name "__pycache__" | xargs rm -r rm -r .pytest_cache rm -r .venv
License and citation
The function keras_tweaks.get_sparsity_pattern is a wrapper for the python package sparsity-pattern what is also licensed under Apache License 2.0. If you are using the function, and like to cite the sparsity-pattern package, then use the DOI: 10.5281/zenodo.4357290
Support
Please open an issue for support.
Contributing
Please contribute using Github Flow. Create a branch, add commits, and open a pull request.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file keras-tweaks-0.4.2.tar.gz
.
File metadata
- Download URL: keras-tweaks-0.4.2.tar.gz
- Upload date:
- Size: 12.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2423796b4d175f41e27d18ac78281e214287bd464296c089c9be8c3ad6c1c1bc |
|
MD5 | 3d6bc4547e19f696bc0247e33c5f08ff |
|
BLAKE2b-256 | 7be9f0c5140d0aaf4215a2bf76ccf1b57bc65a0ed58bd9d7c1ee64b0847ccc55 |