Skip to main content

A Keras Model Visualizer

Project description

Keras Visualizer

LOGO

PyPI PyPI - Downloads GitHub - License Virgool.io Open In Colab

A Python Library for Visualizing Keras Models.

Table of Contents

Installation

Install

Use python package manager (pip) to install Keras Visualizer.

pip install keras-visualizer

Upgrade

Use python package manager (pip) to upgrade Keras Visualizer.

pip install keras-visualizer --upgrade

Usage

from keras_visualizer import visualizer

# create your model here
# model = ...

visualizer(model, file_format='png')

Parameters

visualizer(model, file_name='graph', file_format=None, view=False, settings=None)
  • model : a Keras model instance.
  • file_name : where to save the visualization.
  • file_format : file format to save 'pdf', 'png'.
  • view : open file after process if True.
  • settings : a dictionary of available settings.

Note :

  • set file_format='png' or file_format='pdf' to save visualization file.
  • use view=True to open visualization file.
  • use settings to customize output image.

Settings

you can customize settings for your output image. here is the default settings dictionary:

settings = {
    # ALL LAYERS
    'MAX_NEURONS': 10,
    'ARROW_COLOR': '#707070',
    # INPUT LAYERS
    'INPUT_DENSE_COLOR': '#2ecc71',
    'INPUT_EMBEDDING_COLOR': 'black',
    'INPUT_EMBEDDING_FONT': 'white',
    'INPUT_GRAYSCALE_COLOR': 'black:white',
    'INPUT_GRAYSCALE_FONT': 'white',
    'INPUT_RGB_COLOR': '#e74c3c:#3498db',
    'INPUT_RGB_FONT': 'white',
    'INPUT_LAYER_COLOR': 'black',
    'INPUT_LAYER_FONT': 'white',
    # HIDDEN LAYERS
    'HIDDEN_DENSE_COLOR': '#3498db',
    'HIDDEN_CONV_COLOR': '#5faad0',
    'HIDDEN_CONV_FONT': 'black',
    'HIDDEN_POOLING_COLOR': '#8e44ad',
    'HIDDEN_POOLING_FONT': 'white',
    'HIDDEN_FLATTEN_COLOR': '#2c3e50',
    'HIDDEN_FLATTEN_FONT': 'white',
    'HIDDEN_DROPOUT_COLOR': '#f39c12',
    'HIDDEN_DROPOUT_FONT': 'black',
    'HIDDEN_ACTIVATION_COLOR': '#00b894',
    'HIDDEN_ACTIVATION_FONT': 'black',
    'HIDDEN_LAYER_COLOR': 'black',
    'HIDDEN_LAYER_FONT': 'white',
    # OUTPUT LAYER
    'OUTPUT_DENSE_COLOR': '#e74c3c',
    'OUTPUT_LAYER_COLOR': 'black',
    'OUTPUT_LAYER_FONT': 'white',
}

Note:

  • set 'MAX_NEURONS': None to disable max neurons constraint.
  • see list of color names here.
from keras_visualizer import visualizer

my_settings = {
    'MAX_NEURONS': None,
    'INPUT_DENSE_COLOR': 'teal',
    'HIDDEN_DENSE_COLOR': 'gray',
    'OUTPUT_DENSE_COLOR': 'crimson'
}

# model = ...

visualizer(model, file_format='png', settings=my_settings)

Examples

you can use simple examples as .py or .ipynb format in examples directory.

Example 1

from keras import models, layers
from keras_visualizer import visualizer

model = models.Sequential([
    layers.Dense(64, activation='relu', input_shape=(8,)),
    layers.Dense(6, activation='softmax'),
    layers.Dense(32),
    layers.Dense(9, activation='sigmoid')
])

visualizer(model, file_format='png', view=True)

example 1


Example 2

from keras import models, layers
from keras_visualizer import visualizer

model = models.Sequential()
model.add(layers.Conv2D(64, (3, 3), input_shape=(28, 28, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(3))
model.add(layers.Dropout(0.5))
model.add(layers.Activation('sigmoid'))
model.add(layers.Dense(1))

visualizer(model, file_format='png', view=True)

example 2


Example 3

from keras import models, layers
from keras_visualizer import visualizer

model = models.Sequential()
model.add(layers.Embedding(64, output_dim=256))
model.add(layers.LSTM(128))
model.add(layers.Dense(1, activation='sigmoid'))

visualizer(model, file_format='png', view=True)

example 3

Supported layers

Explore list of keras layers

  1. Core layers

    • Input object
    • Dense layer
    • Activation layer
    • Embedding layer
    • Masking layer
    • Lambda layer
  2. Convolution layers

    • Conv1D layer
    • Conv2D layer
    • Conv3D layer
    • SeparableConv1D layer
    • SeparableConv2D layer
    • DepthwiseConv2D layer
    • Conv1DTranspose layer
    • Conv2DTranspose layer
    • Conv3DTranspose layer
  3. Pooling layers

    • MaxPooling1D layer
    • MaxPooling2D layer
    • MaxPooling3D layer
    • AveragePooling1D layer
    • AveragePooling2D layer
    • AveragePooling3D layer
    • GlobalMaxPooling1D layer
    • GlobalMaxPooling2D layer
    • GlobalMaxPooling3D layer
    • GlobalAveragePooling1D layer
    • GlobalAveragePooling2D layer
    • GlobalAveragePooling3D layer
  4. Reshaping layers

    • Reshape layer
    • Flatten layer
    • RepeatVector layer
    • Permute layer
    • Cropping1D layer
    • Cropping2D layer
    • Cropping3D layer
    • UpSampling1D layer
    • UpSampling2D layer
    • UpSampling3D layer
    • ZeroPadding1D layer
    • ZeroPadding2D layer
    • ZeroPadding3D layer
  5. Regularization layers

    • Dropout layer
    • SpatialDropout1D layer
    • SpatialDropout2D layer
    • SpatialDropout3D layer
    • GaussianDropout layer
    • GaussianNoise layer
    • ActivityRegularization layer
    • AlphaDropout layer

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

keras_visualizer-3.2.0.tar.gz (613.6 kB view details)

Uploaded Source

Built Distribution

keras_visualizer-3.2.0-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file keras_visualizer-3.2.0.tar.gz.

File metadata

  • Download URL: keras_visualizer-3.2.0.tar.gz
  • Upload date:
  • Size: 613.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for keras_visualizer-3.2.0.tar.gz
Algorithm Hash digest
SHA256 4b175e62958ca4ae1733c57fc11d983a0907a0e78367da42705d9375f86fa503
MD5 30ad338abcfc0ea3790d4410b6277e4e
BLAKE2b-256 16e609f94c01993ddac9ff66ca5933b3a0b0b057431d6c5c1b35c3474c90722d

See more details on using hashes here.

File details

Details for the file keras_visualizer-3.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for keras_visualizer-3.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 28236f7726a560da8063b6db348dc162088770fdd46601d88666a87bf2c0b869
MD5 60c39997476406b3fb91702a471b52ce
BLAKE2b-256 c807717bc527b756b10e60dcbdd5b457a0adb6df3315e0d3845fe05c7c22d772

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page