Keras Plugins
Project description
# keras-plugins
## Callbacks
### Telegram Callback
Notify levels available:
1) on_train_begin,
2) on_train_end,
3) on_batch_begin,
4) on_batch_end,
5) on_epoch_begin,
6) on_epoch_end
##### How to use
##### Installation
```
pip install kerasplugins
```
```python
from kerasplugins import callbacks
#Notify can either be a list, dict or set
notify = {
'on_batch_end', # sends BATCH END: Loss 0.50 Accuracy: 0.75
'on_epoch_end' # sends EPOCH END: Loss 0.43 Accuracy: 0.81
}
# msg is the initial message
msg = "Predicting Bitcoin Price"
telegram = callbacks.TelegramNotify(<token>, <chat_id>, msg=msg, notify=notify)
# channel is "#general" by default
slack = callbacks.SlackNotify(<slack_token>, <channel>, msg=msg, notify=notify)
model.fit(X_train, Y_train, validation_data=[X_test, Y_test], batch_size=256, epochs=10, callbacks=[telegram, slack])
```
## Coming Soon
1) Ability to stop training remotely
## Callbacks
### Telegram Callback
Notify levels available:
1) on_train_begin,
2) on_train_end,
3) on_batch_begin,
4) on_batch_end,
5) on_epoch_begin,
6) on_epoch_end
##### How to use
##### Installation
```
pip install kerasplugins
```
```python
from kerasplugins import callbacks
#Notify can either be a list, dict or set
notify = {
'on_batch_end', # sends BATCH END: Loss 0.50 Accuracy: 0.75
'on_epoch_end' # sends EPOCH END: Loss 0.43 Accuracy: 0.81
}
# msg is the initial message
msg = "Predicting Bitcoin Price"
telegram = callbacks.TelegramNotify(<token>, <chat_id>, msg=msg, notify=notify)
# channel is "#general" by default
slack = callbacks.SlackNotify(<slack_token>, <channel>, msg=msg, notify=notify)
model.fit(X_train, Y_train, validation_data=[X_test, Y_test], batch_size=256, epochs=10, callbacks=[telegram, slack])
```
## Coming Soon
1) Ability to stop training remotely
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
kerasplugins-0.1.5.tar.gz
(3.8 kB
view hashes)