Skip to main content

Keras Plugins

Project description

# keras-plugins

## Callbacks

### Telegram Callback

Notify levels available:
1) on_train_begin,
2) on_train_end,
3) on_batch_begin,
4) on_batch_end,
5) on_epoch_begin,
6) on_epoch_end

##### How to use
##### Installation
```
pip install kerasplugins
```

```python
from kerasplugins import callbacks

#Notify can either be a list, dict or set
notify = {
'on_batch_end', # sends BATCH END: Loss 0.50 Accuracy: 0.75
'on_epoch_end' # sends EPOCH END: Loss 0.43 Accuracy: 0.81
}

# msg is the initial message
msg = "Predicting Bitcoin Price"

telegram = callbacks.TelegramNotify(<token>, <chat_id>, msg=msg, notify=notify)

# channel is "#general" by default
slack = callbacks.SlackNotify(<slack_token>, <channel>, msg=msg, notify=notify)

model.fit(X_train, Y_train, validation_data=[X_test, Y_test], batch_size=256, epochs=10, callbacks=[telegram, slack])
```

## Coming Soon
1) Ability to stop training remotely

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for kerasplugins, version 0.1.5
Filename, size File type Python version Upload date Hashes
Filename, size kerasplugins-0.1.5.tar.gz (3.8 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page