Skip to main content

Kernel quantile regression

Project description

Kernel quantile regression

The kernel_quantile_regression package is an open source implementation of the quantile regressor technique introduced in [1].

This repo contains the code for reproducing the research paper Probabilistic energy forecasting through quantile regression in reproducing kernel Hilbert spaces. This article has been published in the ACM SIGEnergy Energy Informatics Review.

Example of kernel quantile regression on the Melbourne temperature data [2]. alt text

Installation

Use the package manager pip to install kernel_quantile_regression.

pip install kernel-quantile-regression

Usage

from kernel_quantile_regression.kqr import KQR

# create model instance
# specify your quantile q and hyperparameters C and gamma
kqr_1=KQR(alpha=q, C=100, gamma=0.5)

# train model
kqr_1.fit(X_train, y_train)

# predict
kqr_1.predict(X_test)

Repo files

  • Data/ The Data directory contains the raw files for the GEFCom2014 challenge [3], data can be accessed from Dr. Tao Hong blog http://blog.drhongtao.com/2017/03/gefcom2014-load-forecasting-data.html. The Data folder contains also the transformed raw data, those constitute the input for our probabilistic forecasting study.

  • plots/ Plots for the tutorial and experiments.

  • src/kernel_quantile_regression Source code.

  • train_test scripts to train the models, saved and test them.

    • models contains , for each quantile, the pickled trained models.
  • utils Utility functions for extracting, loading and transforming raw data of the GEFCom2014 challenge.

  • kqr_tutorial.py Getting started example, where our method is compared against other valid quantile regressors.

References

[1] Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, and Alexander J. Smola. 2006. Non- parametric Quantile Estimation. Journal of Machine Learning Research 7, 45 (2006), 1231–1264. https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf

[2] Rob J Hyndman, David M Bashtannyk, and Gary K Grunwald. 1996. Estimating and visualizing conditional densities. Journal of Computational and Graphical Statistics 5, 4 (1996), 315–336. https://www.jstor.org/stable/1390887

[3] Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J.Hyndman. 2016b. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. International Journal of Forecasting 32, 3 (2016), 896–913. https://www.sciencedirect.com/science/article/abs/pii/S0169207016000133?via%3Dihub

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kernel_quantile_regression-0.0.15.tar.gz (5.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file kernel_quantile_regression-0.0.15.tar.gz.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.15.tar.gz
Algorithm Hash digest
SHA256 7e533cdc1952c687c8528a894e03281e32f3779b1c1f6f33cdc0ab253fe7b315
MD5 e4e65c822289b248b4340eef39c86a02
BLAKE2b-256 19c28ddff3dc3083e8cd64b85bc45e74c016d0ad2f2e0c2617da01f6c9b7fafc

See more details on using hashes here.

File details

Details for the file kernel_quantile_regression-0.0.15-py3-none-any.whl.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 59c8a6dc0cf055dd242247ddd68361136461c5a050f113a56a81c027d6cb75d6
MD5 a2c90e4dafcd31438d7504a4f6daf4f5
BLAKE2b-256 6335435a9866367baf0532414c3b5ec240201fbc2e59bc10686ea52ff5765b4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page