Skip to main content

Kernel quantile regression

Project description

Kernel quantile regression

The kernel_quantile_regression package is an open source implementation of the quantile regressor techique introduced in [1].

Example of kernel quantile regression on the Melbourne temperature data [2]. alt text

Installation

Use the package manager pip to install kernel_quantile_regression.

pip install kernel-quantile-regression

Usage

from kernel_quantile_regression.kqr import KQR

# create model instance
# specify your quantile q and hyperparameters C and gamma
kqr_1=KQR(alpha=q, C=100, gamma=0.5)

# train model
kqr_1.fit(X_train, y_train)

# predict
kqr_1.predict(X_test)

Repo files

  • Data/ The Data directory contains the raw files for the GEFCom2014 challenge [3], data can be accessed from Dr. Tao Hong blog http://blog.drhongtao.com/2017/03/gefcom2014-load-forecasting-data.html. The Data folder contains also the transformed raw data, those constitute the input for our probabilistic forecasting study.

  • plots/ Plots for the tutorial and experiments.

  • src/kernel_quantile_regression Source code.

  • train_test scripts to train the models, saved and test them.

    • models contains , for each quantile, the pickled trained models.
  • utils Utility functions for extracting, loading and transforming raw data of the GEFCom2014 challenge.

  • kqr_tutorial.py Getting started example, where our method is compared against other valid quantile regressors.

References

[1] Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, and Alexander J. Smola. 2006. Non- parametric Quantile Estimation. Journal of Machine Learning Research 7, 45 (2006), 1231–1264. https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf

[2] Rob J Hyndman, David M Bashtannyk, and Gary K Grunwald. 1996. Estimating and visualizing conditional densities. Journal of Computational and Graphical Statistics 5, 4 (1996), 315–336. https://www.jstor.org/stable/1390887

[3] Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J.Hyndman. 2016b. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. International Journal of Forecasting 32, 3 (2016), 896–913. https://www.sciencedirect.com/science/article/abs/pii/S0169207016000133?via%3Dihub

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kernel_quantile_regression-0.0.10.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file kernel_quantile_regression-0.0.10.tar.gz.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.10.tar.gz
Algorithm Hash digest
SHA256 98bfa65bc50be6e3d4e4d219aca57fa020ad71da67d594b3b9438c3604ed697e
MD5 78089a89e37d84d4dcdded11fc1d4423
BLAKE2b-256 6f4cb7cab3e34f8a756191a9f4feb4bce2636e26fcf6155a2b7765e6ffa03886

See more details on using hashes here.

File details

Details for the file kernel_quantile_regression-0.0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 19e87fa07c2eeba2eaa0c888a02c412b37e7f6c93b7f16098e19bfcac4c26be0
MD5 06feb822d0e1b133cde9b2ae5ad51cd8
BLAKE2b-256 04221a153e53c45a041ab669a4163f0a8fe65356dcedb5c841dfa26c4cf23cf0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page