Skip to main content

Kernel quantile regression

Project description

Kernel quantile regression

The kernel_quantile_regression package is an open source implementation of the quantile regressor technique introduced in [1].

Example of kernel quantile regression on the Melbourne temperature data [2]. alt text

Installation

Use the package manager pip to install kernel_quantile_regression.

pip install kernel-quantile-regression

Usage

from kernel_quantile_regression.kqr import KQR

# create model instance
# specify your quantile q and hyperparameters C and gamma
kqr_1=KQR(alpha=q, C=100, gamma=0.5)

# train model
kqr_1.fit(X_train, y_train)

# predict
kqr_1.predict(X_test)

Repo files

  • Data/ The Data directory contains the raw files for the GEFCom2014 challenge [3], data can be accessed from Dr. Tao Hong blog http://blog.drhongtao.com/2017/03/gefcom2014-load-forecasting-data.html. The Data folder contains also the transformed raw data, those constitute the input for our probabilistic forecasting study.

  • plots/ Plots for the tutorial and experiments.

  • src/kernel_quantile_regression Source code.

  • train_test scripts to train the models, saved and test them.

    • models contains , for each quantile, the pickled trained models.
  • utils Utility functions for extracting, loading and transforming raw data of the GEFCom2014 challenge.

  • kqr_tutorial.py Getting started example, where our method is compared against other valid quantile regressors.

References

[1] Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, and Alexander J. Smola. 2006. Non- parametric Quantile Estimation. Journal of Machine Learning Research 7, 45 (2006), 1231–1264. https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf

[2] Rob J Hyndman, David M Bashtannyk, and Gary K Grunwald. 1996. Estimating and visualizing conditional densities. Journal of Computational and Graphical Statistics 5, 4 (1996), 315–336. https://www.jstor.org/stable/1390887

[3] Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J.Hyndman. 2016b. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. International Journal of Forecasting 32, 3 (2016), 896–913. https://www.sciencedirect.com/science/article/abs/pii/S0169207016000133?via%3Dihub

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kernel_quantile_regression-0.0.14.tar.gz (5.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file kernel_quantile_regression-0.0.14.tar.gz.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.14.tar.gz
Algorithm Hash digest
SHA256 1bba2aa32e4e334023434233847437ac30444ffc1cc13fee0fbe4b6f834da522
MD5 df530ae65a28ade99bdd8245bd65a4c4
BLAKE2b-256 ea26097b1da7b7ae7e108145b91b4a5ebe8871fbc7594487eb81cfc2a763531d

See more details on using hashes here.

File details

Details for the file kernel_quantile_regression-0.0.14-py3-none-any.whl.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 8a08fe14bde743a87db2cc38821aef9672affb1cb292c15bcb137153efb0c889
MD5 f46fa6c4ed9a4471c4a8b7bbc3445b17
BLAKE2b-256 faf9c5d38b0f87298e20c4b3a443145ea2d7bd65730abc662513e7f078b35fb6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page