Skip to main content

Kernel quantile regression

Project description

Kernel quantile regression

The kernel_quantile_regression package is an open source implementation of the quantile regressor techique introduced in [1].

alt text

Installation

Use the package manager pip to install kernel_quantile_regression.

pip install kernel-quantile-regression

Usage

from kernel_quantile_regression.kqr import KQR

# create model instance
# specify your quantile q and hyperparameters C and gamma
kqr_1=KQR(alpha=q, C=100, gamma=0.5)

# train model
kqr_1.fit(X_train, y_train)

# predict
kqr_1.predict(X_test)

References

[1] Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, and Alexander J. Smola. 2006. Non- parametric Quantile Estimation. Journal of Machine Learning Research 7, 45 (2006), 1231–1264. https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file kernel_quantile_regression-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 af63db05ee217ca1b81333401d78e170e4b3e2e483390342d00581e5965d50d1
MD5 018a4cb13d91ed2abd855f78318ae4a8
BLAKE2b-256 4d684dfbdc5c69dd757f49c42557866a04adb57310a01e1ac91764c5582ae401

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page