Kernel quantile regression
Project description
Kernel quantile regression
The kernel_quantile_regression package is an open source implementation of the quantile regressor techique introduced in [1].
Installation
Use the package manager pip to install kernel_quantile_regression.
pip install kernel-quantile-regression
Usage
from kernel_quantile_regression.kqr import KQR
# create model instance
# specify your quantile q and hyperparameters C and gamma
kqr_1=KQR(alpha=q, C=100, gamma=0.5)
# train model
kqr_1.fit(X_train, y_train)
# predict
kqr_1.predict(X_test)
References
[1] Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, and Alexander J. Smola. 2006. Non- parametric Quantile Estimation. Journal of Machine Learning Research 7, 45 (2006), 1231–1264. https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf
License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file kernel_quantile_regression-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: kernel_quantile_regression-0.0.2-py3-none-any.whl
- Upload date:
- Size: 4.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | af63db05ee217ca1b81333401d78e170e4b3e2e483390342d00581e5965d50d1 |
|
MD5 | 018a4cb13d91ed2abd855f78318ae4a8 |
|
BLAKE2b-256 | 4d684dfbdc5c69dd757f49c42557866a04adb57310a01e1ac91764c5582ae401 |