Skip to main content

Kernel quantile regression

Project description

Kernel quantile regression

The kernel_quantile_regression package is an open source implementation of the quantile regressor techique introduced in [1].

Example of kernel quantile regression on the Melbourne temperature data [2]. alt text

Installation

Use the package manager pip to install kernel_quantile_regression.

pip install kernel-quantile-regression

Usage

from kernel_quantile_regression.kqr import KQR

# create model instance
# specify your quantile q and hyperparameters C and gamma
kqr_1=KQR(alpha=q, C=100, gamma=0.5)

# train model
kqr_1.fit(X_train, y_train)

# predict
kqr_1.predict(X_test)

Repo files

  • Data/ The Data directory contains the raw files for the GEFCom2014 challenge [3], data can be accessed from Dr. Tao Hong blog http://blog.drhongtao.com/2017/03/gefcom2014-load-forecasting-data.html. The Data folder contains also the transformed raw data, those constitute the input for our probabilistic forecasting study.

  • plots/ Plots for the tutorial and experiments.

  • src/kernel_quantile_regression Source code.

  • train_test scripts to train the models, saved and test them.

    • models contains , for each quantile, the pickled trained models.
  • utils Utility functions for extracting, loading and transforming raw data of the GEFCom2014 challenge.

  • kqr_tutorial.py Getting started example, where our method is compared against other valid quantile regressors.

References

[1] Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, and Alexander J. Smola. 2006. Non- parametric Quantile Estimation. Journal of Machine Learning Research 7, 45 (2006), 1231–1264. https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf

[2] Rob J Hyndman, David M Bashtannyk, and Gary K Grunwald. 1996. Estimating and visualizing conditional densities. Journal of Computational and Graphical Statistics 5, 4 (1996), 315–336. https://www.jstor.org/stable/1390887

[3] Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J.Hyndman. 2016b. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. International Journal of Forecasting 32, 3 (2016), 896–913. https://www.sciencedirect.com/science/article/abs/pii/S0169207016000133?via%3Dihub

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kernel_quantile_regression-0.0.6.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file kernel_quantile_regression-0.0.6.tar.gz.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.6.tar.gz
Algorithm Hash digest
SHA256 5c936a57ab393b420c8b3beb2ad87a219e8a028ad254007824b30237d2830bf9
MD5 d3a3a880b30f8ed98191c2705a54426a
BLAKE2b-256 2847b2ef6fd970ef1818ffd68ee1eb83b6c279aeb5f25c1e09f3cb354f469a6e

See more details on using hashes here.

File details

Details for the file kernel_quantile_regression-0.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 44bcb59205b30a4cda832cf65f43c2831b8c89460dd226191d4d3fd108ac4d6e
MD5 2b625d4b44ac1dfd6cb60e164f2cd4c5
BLAKE2b-256 36dac851859e51e87aecd296c5cedc37b23a307c35a2da1d6b988b1c50b69b41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page