Skip to main content

Kernel quantile regression

Project description

Kernel quantile regression

The kernel_quantile_regression package is an open source implementation of the quantile regressor techique introduced in [1].

Example of kernel quantile regression on the Melbourne temperature data [2]. alt text

Installation

Use the package manager pip to install kernel_quantile_regression.

pip install kernel-quantile-regression

Usage

from kernel_quantile_regression.kqr import KQR

# create model instance
# specify your quantile q and hyperparameters C and gamma
kqr_1=KQR(alpha=q, C=100, gamma=0.5)

# train model
kqr_1.fit(X_train, y_train)

# predict
kqr_1.predict(X_test)

Repo files

  • Data/ The Data directory contains the raw files for the GEFCom2014 challenge [3], data can be accessed from Dr. Tao Hong blog http://blog.drhongtao.com/2017/03/gefcom2014-load-forecasting-data.html. The Data folder contains also the transformed raw data, those constitute the input for our probabilistic forecasting study.

  • plots/ Plots for the tutorial and experiments.

  • src/kernel_quantile_regression Source code.

  • train_test scripts to train the models, saved and test them.

    • models contains , for each quantile, the pickled trained models.
  • utils Utility functions for extracting, loading and transforming raw data of the GEFCom2014 challenge.

  • kqr_tutorial.py Getting started example, where our method is compared against other valid quantile regressors.

References

[1] Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, and Alexander J. Smola. 2006. Non- parametric Quantile Estimation. Journal of Machine Learning Research 7, 45 (2006), 1231–1264. https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf

[2] Rob J Hyndman, David M Bashtannyk, and Gary K Grunwald. 1996. Estimating and visualizing conditional densities. Journal of Computational and Graphical Statistics 5, 4 (1996), 315–336. https://www.jstor.org/stable/1390887

[3] Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J.Hyndman. 2016b. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. International Journal of Forecasting 32, 3 (2016), 896–913. https://www.sciencedirect.com/science/article/abs/pii/S0169207016000133?via%3Dihub

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kernel_quantile_regression-0.0.7.tar.gz (2.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file kernel_quantile_regression-0.0.7.tar.gz.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.7.tar.gz
Algorithm Hash digest
SHA256 68fec23c21f54504a78565be3bcafd2972e1c2708c8c5227ded62fd81ca2ba61
MD5 1291ce600df258ec9643b0e7b0ada484
BLAKE2b-256 96b4344d28998993a7b9b45be2690b56b449fcd44aba62c87350f5062f4f7277

See more details on using hashes here.

File details

Details for the file kernel_quantile_regression-0.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 875d121ea0daae13f0afe1ad6a813112124fabbd026b6ad4dfde7566f128ee31
MD5 2aa158975e46b7f55e2a48493350b115
BLAKE2b-256 f5fb8a47c6e691a45c9ca83ab0e6eb536418ce1ec4dd117a45c0897b2f6f9715

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page