Skip to main content

Kernel quantile regression

Project description

Kernel quantile regression

The kernel_quantile_regression package is an open source implementation of the quantile regressor techique introduced in [1].

Example of kernel quantile regression on the Melbourne temperature data [2]. alt text

Installation

Use the package manager pip to install kernel_quantile_regression.

pip install kernel-quantile-regression

Usage

from kernel_quantile_regression.kqr import KQR

# create model instance
# specify your quantile q and hyperparameters C and gamma
kqr_1=KQR(alpha=q, C=100, gamma=0.5)

# train model
kqr_1.fit(X_train, y_train)

# predict
kqr_1.predict(X_test)

Repo files

  • Data/ The Data directory contains the raw files for the GEFCom2014 challenge [3], data can be accessed from Dr. Tao Hong blog http://blog.drhongtao.com/2017/03/gefcom2014-load-forecasting-data.html. The Data folder contains also the transformed raw data, those constitute the input for our probabilistic forecasting study.

  • plots/ Plots for the tutorial and experiments.

  • src/kernel_quantile_regression Source code.

  • train_test scripts to train the models, saved and test them.

    • models contains , for each quantile, the pickled trained models.
  • utils Utility functions for extracting, loading and transforming raw data of the GEFCom2014 challenge.

  • kqr_tutorial.py Getting started example, where our method is compared against other valid quantile regressors.

References

[1] Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, and Alexander J. Smola. 2006. Non- parametric Quantile Estimation. Journal of Machine Learning Research 7, 45 (2006), 1231–1264. https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf

[2] Rob J Hyndman, David M Bashtannyk, and Gary K Grunwald. 1996. Estimating and visualizing conditional densities. Journal of Computational and Graphical Statistics 5, 4 (1996), 315–336. https://www.jstor.org/stable/1390887

[3] Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J.Hyndman. 2016b. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. International Journal of Forecasting 32, 3 (2016), 896–913. https://www.sciencedirect.com/science/article/abs/pii/S0169207016000133?via%3Dihub

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kernel_quantile_regression-0.0.8.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file kernel_quantile_regression-0.0.8.tar.gz.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.8.tar.gz
Algorithm Hash digest
SHA256 bc3f3727a1157909f5bb2e5ecbb67cdbde9400f868ee28036f28189033a7cb15
MD5 78c7fe654430ddb4aec01e8e998fa0e5
BLAKE2b-256 35536352628a6762cfeff73aa1ae041a84857a32b6221b5450c8c6da6a463f91

See more details on using hashes here.

File details

Details for the file kernel_quantile_regression-0.0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for kernel_quantile_regression-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 553aa12884e7d9ddca927c689f08991de68e78f1252b8d84173b928c2f0c57e9
MD5 afb89de80c2a203274bc1cd24e493bca
BLAKE2b-256 38d53f101b74632bb5af0c14a8a3ba9e2d48a27729ca75982586cce5c4d18720

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page