Skip to main content

Stencil computations in JAX.

Project description

Differentiable Stencil computations in JAX

Installation |Description |Quick example |Function mesh |More Examples |Benchmarking

Tests pyver codestyle Downloads Open In Colab codecov DOI

๐Ÿ› ๏ธ Installation

pip install kernex

๐Ÿ“– Description

Kernex extends jax.vmap/jax.lax.map/jax.pmap with kmap and jax.lax.scan with kscan for general stencil computations.

The prime motivation for this package is to blend the solution process of PDEs into a NN setting.

โฉ Quick Example

kmap kscan
import kernex as kex
import jax.numpy as jnp

@kex.kmap(kernel_size=(3,))
def sum_all(x):
    return jnp.sum(x)

>>> x = jnp.array([1,2,3,4,5])
>>> print(sum_all(x))
[ 6  9 12]
import kernex as kex 
import jax.numpy as jnp

@kex.kscan(kernel_size=(3,))
def sum_all(x):
return jnp.sum(x)

> > > x = jnp.array([1,2,3,4,5])
> > > print(sum_all(x))
> > > [ 6 13 22]
`jax.vmap` is used to sum each window content. `lax.scan` is used to update the array and the window sum is calculated sequentially. the first three rows represents the three sequential steps used to get the solution in the last row.

๐Ÿ•ธ๏ธ Function mesh concept

The objective is to apply f(x) = x^2 at index=0 and f(x) = x^3 at index=(1,10)

To achieve the following operation with jax.lax.switch , we need a list of 10 functions correspoing to each cell of the example array. For this reason , kernex adopts a modified version of jax.lax.switch to reduce the number of branches required.

# function applies x^2 at boundaries, and applies x^3 to to the interior

        โ”Œโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”
  f =   โ”‚ x^2 โ”‚ x^3 โ”‚ x^3 โ”‚ x^3 โ”‚ x^3 โ”‚ x^3 โ”‚ x^3 โ”‚ x^3 โ”‚ x^3 โ”‚ x^3 โ”‚
        โ””โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”˜

        โ”Œโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”
 f(     โ”‚  1  โ”‚  2  โ”‚  3  โ”‚  4  โ”‚  5  โ”‚  6  โ”‚  7  โ”‚  8  โ”‚  9  โ”‚ 10  โ”‚ ) =
        โ””โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”˜
        โ”Œโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”
        โ”‚  1  โ”‚  8  โ”‚  27 โ”‚  64 โ”‚ 125 โ”‚ 216 โ”‚ 343 โ”‚ 512 โ”‚ 729 โ”‚1000 โ”‚
        โ””โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”˜

# Gradient of this function
        โ”Œโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”
df/dx = โ”‚ 2x  โ”‚3x^2 โ”‚3x^2 โ”‚3x^2 โ”‚3x^2 โ”‚3x^2 โ”‚3x^2 โ”‚3x^2 โ”‚3x^2 โ”‚3x^2 โ”‚
        โ””โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”˜


        โ”Œโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”
 df/dx( โ”‚  1  โ”‚  2  โ”‚  3  โ”‚  4  โ”‚  5  โ”‚  6  โ”‚  7  โ”‚  8  โ”‚  9  โ”‚ 10  โ”‚ ) =
        โ””โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”˜
        โ”Œโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”
        โ”‚  2  โ”‚  12 โ”‚ 27  โ”‚  48 โ”‚ 75  โ”‚ 108 โ”‚ 147 โ”‚ 192 โ”‚ 243 โ”‚ 300 โ”‚
        โ””โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”˜
Function mesh Array equivalent
F = kex.kmap(kernel_size=(1,))
F[0] = lambda x:x[0]**2
F[1:] = lambda x:x[0]**3





array = jnp.arange(1,11).astype('float32')
print(F(array))
>>> [1., 8., 27., 64., 125.,
... 216., 343., 512., 729., 1000.]

print(jax.grad(lambda x:jnp.sum(F(x)))(array))
>>> [2.,12.,27.,48.,75.,
... 108.,147.,192.,243.,300.]
def F(x):
    f1 = lambda x:x**2
    f2 = lambda x:x**3
    x = x.at[0].set(f1(x[0]))
    x = x.at[1:].set(f2(x[1:]))
    return x

array = jnp.arange(1,11).astype('float32')
print(F(array))
>>> [1., 8., 27., 64., 125.,
... 216., 343., 512., 729., 1000.]

print(jax.grad(lambda x: jnp.sum(F(x)))(array))
>>> [2.,12.,27.,48.,75.,
... 108.,147.,192.,243.,300.]

Additionally , we can combine the function mesh concept with stencil computation for scientific computing. See Linear convection in More examples section

๐Ÿ”ข More examples

1๏ธโƒฃ Convolution operation
import jax
import jax.numpy as jnp
import kernex as kex

@jax.jit
@kex.kmap(
    kernel_size= (3,3,3),
    padding = ('valid','same','same'))
def kernex_conv2d(x,w):
    # JAX channel first conv2d with 3x3x3 kernel_size
    return jnp.sum(x*w)
2๏ธโƒฃ Laplacian operation
# see also
# https://numba.pydata.org/numba-doc/latest/user/stencil.html#basic-usage
import jax
import jax.numpy as jnp
import kernex as kex

@kex.kmap(
    kernel_size=(3,3),
    padding= 'valid',
    relative=True) # `relative`= True enables relative indexing
def laplacian(x):
    return ( 0*x[1,-1]  + 1*x[1,0]   + 0*x[1,1] +
             1*x[0,-1]  +-4*x[0,0]   + 1*x[0,1] +
             0*x[-1,-1] + 1*x[-1,0]  + 0*x[-1,1] )

# apply laplacian
>>> print(laplacian(jnp.ones([10,10])))
DeviceArray(
    [[0., 0., 0., 0., 0., 0., 0., 0.],
    [0., 0., 0., 0., 0., 0., 0., 0.],
    [0., 0., 0., 0., 0., 0., 0., 0.],
    [0., 0., 0., 0., 0., 0., 0., 0.],
    [0., 0., 0., 0., 0., 0., 0., 0.],
    [0., 0., 0., 0., 0., 0., 0., 0.],
    [0., 0., 0., 0., 0., 0., 0., 0.],
    [0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32)
3๏ธโƒฃ Get Patches of an array
import jax
import jax.numpy as jnp
import kernex as kex

@kex.kmap(kernel_size=(3,3),relative=True)
def identity(x):
    # similar to numba.stencil
    # this function returns the top left cell in the padded/unpadded kernel view
    # or center cell if `relative`=True
    return x[0,0]

# unlike numba.stencil , vector output is allowed in kernex
# this function is similar to
# `jax.lax.conv_general_dilated_patches(x,(3,),(1,),padding='same')`
@jax.jit
@kex.kmap(kernel_size=(3,3),padding='same')
def get_3x3_patches(x):
    # returns 5x5x3x3 array
    return x

mat = jnp.arange(1,26).reshape(5,5)
>>> print(mat)
[[ 1  2  3  4  5]
 [ 6  7  8  9 10]
 [11 12 13 14 15]
 [16 17 18 19 20]
 [21 22 23 24 25]]


# get the view at array index = (0,0)
>>> print(get_3x3_patches(mat)[0,0])
[[0 0 0]
 [0 1 2]
 [0 6 7]]
4๏ธโƒฃ Linear convection

$\Large {\partial u \over \partial t} + c {\partial u \over \partial x} = 0$

$\Large u_i^{n} = u_i^{n-1} - c \frac{\Delta t}{\Delta x}(u_i^{n-1}-u_{i-1}^{n-1})$

Problem setup Stencil view
import jax
import jax.numpy as jnp
import kernex as kex
import matplotlib.pyplot as plt

# see https://nbviewer.org/github/barbagroup/CFDPython/blob/master/lessons/01_Step_1.ipynb

tmax,xmax = 0.5,2.0
nt,nx = 151,51
dt,dx = tmax/(nt-1) , xmax/(nx-1)
u = jnp.ones([nt,nx])
c = 0.5

# kscan moves sequentially in row-major order and updates in-place using lax.scan.

F = kernex.kscan(
        kernel_size = (3,3),
        padding = ((1,1),(1,1)),
        named_axis={0:'n',1:'i'},  # n for time axis , i for spatial axis (optional naming)
        relative=True
        )


# boundary condtion as a function
def bc(u):
    return 1

# initial condtion as a function
def ic1(u):
    return 1

def ic2(u):
    return 2

def linear_convection(u):
    return ( u['i','n-1'] - (c*dt/dx) * (u['i','n-1'] - u['i-1','n-1']) )


F[:,0]  = F[:,-1] = bc # assign 1 for left and right boundary for all t

# square wave initial condition
F[:,:int((nx-1)/4)+1] = F[:,int((nx-1)/2):] = ic1
F[0:1, int((nx-1)/4)+1 : int((nx-1)/2)] = ic2

# assign linear convection function for
# interior spatial location [1:-1]
# and start from t>0  [1:]
F[1:,1:-1] = linear_convection

kx_solution = F(jnp.array(u))

plt.figure(figsize=(20,7))
for line in kx_solution[::20]:
    plt.plot(jnp.linspace(0,xmax,nx),line)

image

5๏ธโƒฃ Gaussian blur
import jax
import jax.numpy as jnp
import kernex as kex

def gaussian_blur(image, sigma, kernel_size):
    x = jnp.linspace(-(kernel_size - 1) / 2.0, (kernel_size- 1) / 2.0, kernel_size)
    w = jnp.exp(-0.5 * jnp.square(x) * jax.lax.rsqrt(sigma))
    w = jnp.outer(w, w)
    w = w / w.sum()

    @kex.kmap(kernel_size=(kernel_size, kernel_size), padding="same")
    def conv(x):
        return jnp.sum(x * w)

    return conv(image)
6๏ธโƒฃ Depthwise convolution
import jax
import jax.numpy as jnp
import kernex as kex

@jax.jit
@jax.vmap
@kex.kmap(
kernel_size= (3,3),
padding = ('same','same'))
def kernex_depthwise_conv2d(x,w): # Channel-first depthwise convolution # jax.debug.print("x=\n{a}\nw=\n{b} \n\n",a=x, b=w)
return jnp.sum(x\*w)

h,w,c = 5,5,2
k=3

x = jnp.arange(1,h*w*c+1).reshape(c,h,w)
w = jnp.arange(1,k*k*c+1).reshape(c,k,k)
print(kernex_depthwise_conv2d(x,w))</summary>
7๏ธโƒฃ Maxpooling2D and Averagepooling2D
@jax.vmap # vectorize over the channel dimension
@kex.kmap(kernel_size=(3,3), strides=(2,2))
def maxpool_2d(x):
    # define the kernel for the Maxpool operation over the spatial dimensions
    return jnp.max(x)

@jax.vmap # vectorize over the channel dimension
@kex.kmap(kernel_size=(3,3), strides=(2,2))
def avgpool_2d(x):
    # define the kernel for the Average pool operation over the spatial dimensions
    return jnp.mean(x)
8๏ธโƒฃ Runge-Kutta integration
# lets solve dydt = y, where y0 = 1 and y(t)=e^t
# using Runge-Kutta 4th order method
# f(t,y) = y
import jax.numpy as jnp
import matplotlib.pyplot as plt
import kernex as kex


t = jnp.linspace(0, 1, 5)
y = jnp.zeros(5)
x = jnp.stack([y, t], axis=0)
dt = t[1] - t[0]  # 0.1
f = lambda tn, yn: yn


def ic(x):
    """ initial condition y0 = 1 """
    return 1.


def rk4(x):
    """ runge kutta 4th order integration step """
    # โ”Œโ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”      โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”
    # โ”‚ y0 โ”‚*y1*โ”‚ y2 โ”‚      โ”‚[0,-1]โ”‚[0, 0]โ”‚[0, 1]โ”‚
    # โ”œโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ค ==>  โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ค
    # โ”‚ t0 โ”‚ t1 โ”‚ t2 โ”‚      โ”‚[1,-1]โ”‚[1, 0]โ”‚[1, 1]โ”‚
    # โ””โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”˜      โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”˜
    t0 = x[1, -1]
    y0 = x[0, -1]
    k1 = dt * f(t0, y0)
    k2 = dt * f(t0 + dt / 2, y0 + 1 / 2 * k1)
    k3 = dt * f(t0 + dt / 2, y0 + 1 / 2 * k2)
    k4 = dt * f(t0 + dt, y0 + k3)
    yn_1 = y0 + 1 / 6 * (k1 + 2 * k2 + 2 * k3 + k4)
    return yn_1


F = kex.kscan(kernel_size=(2, 3), relative=True, padding=((0, 1)))  # kernel size = 3

F[0:1, 1:] = rk4
F[0, 0] = ic
# compile the solver
solver = jax.jit(F.__call__)
y = solver(x)[0, :]

plt.plot(t, y, '-o', label='rk4')
plt.plot(t, jnp.exp(t), '-o', label='analytical')
plt.legend()

img

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kernex-0.2.0.tar.gz (28.9 kB view details)

Uploaded Source

Built Distribution

kernex-0.2.0-py3-none-any.whl (31.6 kB view details)

Uploaded Python 3

File details

Details for the file kernex-0.2.0.tar.gz.

File metadata

  • Download URL: kernex-0.2.0.tar.gz
  • Upload date:
  • Size: 28.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for kernex-0.2.0.tar.gz
Algorithm Hash digest
SHA256 c8064142ff7772b2c770a4ce46be6336c85c1e15c6589d7b0a9d451ce726c3a0
MD5 fc0a8c928b1e3d9c9979114c1cd58ac2
BLAKE2b-256 b630b8c0fbf0e47bf728249beae14cd2fe82dd11955fcf390cf8b90e2247a76e

See more details on using hashes here.

File details

Details for the file kernex-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: kernex-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 31.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for kernex-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 10b93c65fb23a5f46239961ffb1ab5558cbc43978e86758ef8e42936ef700a19
MD5 e4ddb96572cf1941fb15755f72565ab7
BLAKE2b-256 20cb54842aafc3082e3deb14c037c1b014c71955588ac2658f531c0b5173d1bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page