A Python library for estimating kidney failure risk using the KFRE model developed by Tangri et al.
Project description
kfre
is a Python library designed to estimate the risk of chronic kidney disease (CKD) progression using the Kidney Failure Risk Equation (KFRE) developed by Tangri et al. It provides risk assessments over two distinct timelines: 2 years and 5 years. The library is tailored for healthcare professionals and researchers, enabling precise CKD risk predictions based on patient data. It supports predictions for both males and females and includes adjustments for individuals from North American and non-North American regions.
Prerequisites
Before you install kfre
, ensure you have the following:
- Python: Python 3.7.4 or higher is required to run
kfre
.
Additionally, kfre has the following package dependencies:
- numpy: version 1.18.5 or higher
- pandas: version 1.0.5 or higher
- matplotlib: version 3.2.2 or higher
- seaborn: version 0.10.1 or higher
- scikit-learn: version 0.23.1 or higher
- tqdm: version 4.48.0 or higher
Installation
You can install kfre
directly from PyPI:
pip install kfre
📄 Official Documentation
https://lshpaner.github.io/kfre
🌐 Author Website
⚖️ License
kfre
is distributed under the MIT License. See LICENSE for more information.
📚 Citing kfre
If you use kfre
in your research or projects, please consider citing it.
@software{shpaner_2024_11100222,
author = {Shpaner, Leonid},
title = {{kfre: A Python Library for Reproducing Kidney
Failure Risk Equations (KFRE)}},
month = may,
year = 2024,
publisher = {Zenodo},
version = {0.1.12},
doi = {10.5281/zenodo.11100222},
url = {https://doi.org/10.5281/zenodo.11100222}
}
Support
If you have any questions or issues with kfre
, please open an issue on this GitHub repository.
Acknowledgements
The KFRE model developed by Tangri et al. has made significant contributions to kidney disease research.
The kfre
library is based on the risk prediction models developed in the studies referenced below. Please refer to these studies for an in-depth understanding of the kidney failure risk prediction models used within this library.
Special thanks to Panayiotis Petousis, PhD, Obidiugwu Duru, MD, MS, Kenn B. Daratha, PhD, Keith C. Norris, MD, PhD, Katherine R. Tuttle MD, FASN, FACP, FNKF, Susanne B. Nicholas, MD, MPH, PhD, and Alex Bui, PhD. Their exceptional work on end-stage kidney disease has greatly inspired the creation of this library.
References
Sumida, K., Nadkarni, G. N., Grams, M. E., Sang, Y., Ballew, S. H., Coresh, J., Matsushita, K., Surapaneni, A., Brunskill, N., Chadban, S. J., Chang, A. R., Cirillo, M., Daratha, K. B., Gansevoort, R. T., Garg, A. X., Iacoviello, L., Kayama, T., Konta, T., Kovesdy, C. P., Lash, J., Lee, B. J., Major, R. W., Metzger, M., Miura, K., Naimark, D. M. J., Nelson, R. G., Sawhney, S., Stempniewicz, N., Tang, M., Townsend, R. R., Traynor, J. P., Valdivielso, J. M., Wetzels, J., Polkinghorne, K. R., & Heerspink, H. J. L. (2020). Conversion of urine protein-creatinine ratio or urine dipstick protein to urine albumin-creatinine ratio for use in chronic kidney disease screening and prognosis. Annals of Internal Medicine, 173(6), 426-435. https://doi.org/10.7326/M20-0529
Tangri, N., Grams, M. E., Levey, A. S., Coresh, J., Appel, L. J., Astor, B. C., Chodick, G., Collins, A. J., Djurdjev, O., Elley, C. R., Evans, M., Garg, A. X., Hallan, S. I., Inker, L. A., Ito, S., Jee, S. H., Kovesdy, C. P., Kronenberg, F., Heerspink, H. J. L., Marks, A., Nadkarni, G. N., Navaneethan, S. D., Nelson, R. G., Titze, S., Sarnak, M. J., Stengel, B., Woodward, M., Iseki, K., & for the CKD Prognosis Consortium. (2016). Multinational assessment of accuracy of equations for predicting risk of kidney failure: A meta-analysis. JAMA, 315(2), 164–174. https://doi.org/10.1001/jama.2015.18202
Tangri, N., Stevens, L. A., Griffith, J., Tighiouart, H., Djurdjev, O., Naimark, D., Levin, A., & Levey, A. S. (2011). A predictive model for progression of chronic kidney disease to kidney failure. JAMA, 305(15), 1553-1559. https://doi.org/10.1001/jama.2011.451
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file kfre-0.1.12.tar.gz
.
File metadata
- Download URL: kfre-0.1.12.tar.gz
- Upload date:
- Size: 27.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 346712c71acb213d979d40df5ed54cb31365a1f4f60bfd59d26409746abbb2b5 |
|
MD5 | 4c459dc97044bf872f61179b2d763579 |
|
BLAKE2b-256 | 16448acf1e66296feababea76c5cf0587eb2ef377532029c9e163c184760ec69 |
File details
Details for the file kfre-0.1.12-py3-none-any.whl
.
File metadata
- Download URL: kfre-0.1.12-py3-none-any.whl
- Upload date:
- Size: 19.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 10ce59b1ea0505fc117644c55c22d8ad23f5c4aab7b5ec65a046dbc900b098a9 |
|
MD5 | bbdfb7f6436895ce048112f321e9bed3 |
|
BLAKE2b-256 | bcfff5ffcce199205e71adcd96fb8572daf61ac96dd9dcb3cb07ca9fca2c85de |