Skip to main content

A Python library for estimating kidney failure risk using the KFRE model developed by Tangri et al.

Project description

PyPI Downloads License: MIT Zenodo


kfre is a Python library designed to estimate the risk of chronic kidney disease (CKD) progression using the Kidney Failure Risk Equation (KFRE) developed by Tangri et al. It provides risk assessments over two distinct timelines: 2 years and 5 years. The library is tailored for healthcare professionals and researchers, enabling precise CKD risk predictions based on patient data. It supports predictions for both males and females and includes adjustments for individuals from North American and non-North American regions.

Prerequisites

Before you install kfre, ensure you have the following:

  • Python: Python 3.7.4 or higher is required to run kfre.

Additionally, kfre has the following package dependencies:

  • numpy: version 1.18.5 or higher
  • pandas: version 1.0.5 or higher
  • matplotlib: version 3.2.2 or higher
  • seaborn: version 0.10.1 or higher
  • scikit-learn: version 0.23.1 or higher
  • tqdm: version 4.48.0 or higher

Installation

You can install kfre directly from PyPI:

pip install kfre

📄 Official Documentation

https://lshpaner.github.io/kfre

🌐 Author Website

https://www.leonshpaner.com

⚖️ License

kfre is distributed under the MIT License. See LICENSE for more information.

📚 Citing kfre

If you use kfre in your research or projects, please consider citing it.

    @software{shpaner_2024_11100222,
      author       = {Shpaner, Leonid},
      title        = {{kfre: A Python Library for Reproducing Kidney 
                       Failure Risk Equations (KFRE)}},
      month        = may,
      year         = 2024,
      publisher    = {Zenodo},
      version      = {0.1.12},
      doi          = {10.5281/zenodo.11100222},
      url          = {https://doi.org/10.5281/zenodo.11100222}
    }

Support

If you have any questions or issues with kfre, please open an issue on this GitHub repository.

Acknowledgements

The KFRE model developed by Tangri et al. has made significant contributions to kidney disease research.

The kfre library is based on the risk prediction models developed in the studies referenced below. Please refer to these studies for an in-depth understanding of the kidney failure risk prediction models used within this library.

Special thanks to Panayiotis Petousis, PhD, Obidiugwu Duru, MD, MS, Kenn B. Daratha, PhD, Keith C. Norris, MD, PhD, Katherine R. Tuttle MD, FASN, FACP, FNKF, Susanne B. Nicholas, MD, MPH, PhD, and Alex Bui, PhD. Their exceptional work on end-stage kidney disease has greatly inspired the creation of this library.

References

Sumida, K., Nadkarni, G. N., Grams, M. E., Sang, Y., Ballew, S. H., Coresh, J., Matsushita, K., Surapaneni, A., Brunskill, N., Chadban, S. J., Chang, A. R., Cirillo, M., Daratha, K. B., Gansevoort, R. T., Garg, A. X., Iacoviello, L., Kayama, T., Konta, T., Kovesdy, C. P., Lash, J., Lee, B. J., Major, R. W., Metzger, M., Miura, K., Naimark, D. M. J., Nelson, R. G., Sawhney, S., Stempniewicz, N., Tang, M., Townsend, R. R., Traynor, J. P., Valdivielso, J. M., Wetzels, J., Polkinghorne, K. R., & Heerspink, H. J. L. (2020). Conversion of urine protein-creatinine ratio or urine dipstick protein to urine albumin-creatinine ratio for use in chronic kidney disease screening and prognosis. Annals of Internal Medicine, 173(6), 426-435. https://doi.org/10.7326/M20-0529

Tangri, N., Grams, M. E., Levey, A. S., Coresh, J., Appel, L. J., Astor, B. C., Chodick, G., Collins, A. J., Djurdjev, O., Elley, C. R., Evans, M., Garg, A. X., Hallan, S. I., Inker, L. A., Ito, S., Jee, S. H., Kovesdy, C. P., Kronenberg, F., Heerspink, H. J. L., Marks, A., Nadkarni, G. N., Navaneethan, S. D., Nelson, R. G., Titze, S., Sarnak, M. J., Stengel, B., Woodward, M., Iseki, K., & for the CKD Prognosis Consortium. (2016). Multinational assessment of accuracy of equations for predicting risk of kidney failure: A meta-analysis. JAMA, 315(2), 164–174. https://doi.org/10.1001/jama.2015.18202

Tangri, N., Stevens, L. A., Griffith, J., Tighiouart, H., Djurdjev, O., Naimark, D., Levin, A., & Levey, A. S. (2011). A predictive model for progression of chronic kidney disease to kidney failure. JAMA, 305(15), 1553-1559. https://doi.org/10.1001/jama.2011.451

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kfre-0.1.12.tar.gz (27.5 kB view details)

Uploaded Source

Built Distribution

kfre-0.1.12-py3-none-any.whl (19.3 kB view details)

Uploaded Python 3

File details

Details for the file kfre-0.1.12.tar.gz.

File metadata

  • Download URL: kfre-0.1.12.tar.gz
  • Upload date:
  • Size: 27.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for kfre-0.1.12.tar.gz
Algorithm Hash digest
SHA256 346712c71acb213d979d40df5ed54cb31365a1f4f60bfd59d26409746abbb2b5
MD5 4c459dc97044bf872f61179b2d763579
BLAKE2b-256 16448acf1e66296feababea76c5cf0587eb2ef377532029c9e163c184760ec69

See more details on using hashes here.

File details

Details for the file kfre-0.1.12-py3-none-any.whl.

File metadata

  • Download URL: kfre-0.1.12-py3-none-any.whl
  • Upload date:
  • Size: 19.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for kfre-0.1.12-py3-none-any.whl
Algorithm Hash digest
SHA256 10ce59b1ea0505fc117644c55c22d8ad23f5c4aab7b5ec65a046dbc900b098a9
MD5 bbdfb7f6436895ce048112f321e9bed3
BLAKE2b-256 bcfff5ffcce199205e71adcd96fb8572daf61ac96dd9dcb3cb07ca9fca2c85de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page