Skip to main content

Preparing russian hockey news for machine learning

Project description

Khl Logo

No Water - Ice Only

Preparing russian hockey news for machine learning.

Unify -> Simplify -> Preprocess text and feed your neural model.

Installation

Khl is available on PyPI:

$ pip install khl

It requires Python 3.8+ to run.

Usage

To get started right away with basic usage:

from khl import text_to_codes

lemmas_coder = {
    '': 0,     # placeholder
    '???': 1,  # unknown
    '.': 2,
    'и': 3,
    'в': 4,
    '-': 5,
    ':': 6,
    'матч': 7,
    'за': 8,
    'забить': 9,
    'гол': 10,
    'per': 11,   # person entity
    'org': 12,   # organization entity
    'loc': 13,   # location entity
    'date': 14,  # date entity
    'против': 15,
    'год': 16,
    'pers': 17,  # few persons entity
    'orgs': 18,  # few organizations entity
    'свой': 19
}

text = """
    1 апреля 2023 года в Москве в матче ⅛ финала против „Спартака” Иван Иванов забил свой 100—й гол за карьеру.
    «Динамо Мск» - «Спартак» 2:1 ОТ (1:0 0:1 0:0 1:0) Голы забили: Иванов, Петров и Сидоров.
"""

codes = text_to_codes(
    text=text,
    lemmas_coder=lemmas_coder,
    stop_words_=["в", "за", "и", "свой"],  # stop words to drop
    replace_ners_=True,                    # replace named entities ("Иван Иванов" -> "per", "Спартак" -> "org", "Москва" -> "loc")
    replace_dates_=True,                   # replace dates ("1 апреля 2023 года" -> "date")
    replace_penalties_=True,               # replace penalties ("5+20" -> "pen")
    exclude_unknown=True,                  # drop lemma that not presented in lemmas_coder
    max_len=20,                            # get sequence of codes of length 20
)
# codes = [0, 0, 0, 0, 0, 14, 13, 7, 15, 12, 11, 9, 10, 2, 18, 10, 9, 6, 17, 2]

text_to_codes is a very high level function. What's happens under hood see in Lower level usage.

What is lemmas_coder?

lemmas_coder is just a dictionary where each lemma is represented with unique integer code. Note that first two elements are reserved for placeholder and unknown elements.

It is possible to get lemmas_coder from frequency dictionary file (see in Get lemmas coder). Frequency dictionary file is a json-file with dictionary where key is lemma and value is how many times this lemma occurred in your whole dataset. Preferably it should be sorted in descending order of values.
example_frequency_dictionary.json:

{
  ".": 1000,
  "и": 500,
  "в": 400,
  "-": 300,
  ":": 300,
  "матч": 290,
  "за": 250,
  "забить": 240,
  "гол": 230,
  "per": 200,
  "org": 150,
  "loc": 150,
  "date": 100,
  "против": 90,
  "год": 70,
  "pers": 40,
  "orgs": 30,
  "свой": 20
}

You could make and use your own frequency dictionary or download this dictionary created by myself.

Lower level usage

1. Make imports

from khl import stop_words
from khl import utils
from khl import preprocess

2. Get lemmas coder

lemmas_coder = preprocess.get_lemmas_coder("example_frequency_dictionary.json")

3. Define text

text = """
    1 апреля 2023 года в Москве в матче ⅛ финала против „Спартака” Иван Иванов забил свой 100—й гол за карьеру.
    «Динамо Мск» - «Спартак» 2:1 ОТ (1:0 0:1 0:0 1:0) Голы забили: Иванов, Петров и Сидоров.
"""

4. Unify

unified_text = utils.unify_text(text)
# "1 апреля 2023 года в Москве в матче 1/8 финала против 'Спартака' Иван Иванов забил свой 100-й гол за карьеру. 'Динамо Мск' - 'Спартак' 2:1 ОТ (1:0 0:1 0:0 1:0) Голы забили: Иванов, Петров и Сидоров."

5. Simplify

simplified_text = utils.simplify_text(
    text=unified_text,
    replace_ners_=True,
    replace_dates_=True,
    replace_penalties_=True,
)
# 'date в loc в матче финала против org per забил свой гол за карьеру. org org Голы забили: per per и per.'

6. Lemmatize

lemmas = preprocess.lemmatize(text=simplified_text, stop_words_=stop_words)
# ['date', 'loc', 'матч', 'финал', 'против', 'org', 'per', 'забить', 'гол', 'карьера', '.', 'orgs', 'гол', 'забить', ':', 'pers', '.']

7. Transform to codes

codes = preprocess.lemmas_to_codes(
    lemmas=lemmas,
    lemmas_coder=lemmas_coder,
    exclude_unknown=True,
    max_len=20,
)
# [0, 0, 0, 0, 0, 14, 13, 7, 15, 12, 11, 9, 10, 2, 18, 10, 9, 6, 17, 2]

8. Transform to lemmas back (just to look which lemmas are presented in codes sequence)

print(
    preprocess.codes_to_lemmas(codes=codes, lemmas_coder=lemmas_coder)
)
# ['', '', '', '', '', 'date', 'loc', 'матч', 'против', 'org', 'per', 'забить', 'гол', '.', 'orgs', 'гол', 'забить', ':', 'pers', '.']

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

khl-1.0.5.tar.gz (21.3 kB view details)

Uploaded Source

Built Distribution

khl-1.0.5-py3-none-any.whl (20.1 kB view details)

Uploaded Python 3

File details

Details for the file khl-1.0.5.tar.gz.

File metadata

  • Download URL: khl-1.0.5.tar.gz
  • Upload date:
  • Size: 21.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.8.10 Linux/5.15.0-67-generic

File hashes

Hashes for khl-1.0.5.tar.gz
Algorithm Hash digest
SHA256 5724d063d5c35bdf13e1cc81c84c10280cb0f928ddd8afd641db011613e1cb14
MD5 31f6503471acdbc94eafcb05cdb93e46
BLAKE2b-256 bd129d4ec174e40ea3c36478929ddaba4002122e58d7ca88351b41929fafab03

See more details on using hashes here.

File details

Details for the file khl-1.0.5-py3-none-any.whl.

File metadata

  • Download URL: khl-1.0.5-py3-none-any.whl
  • Upload date:
  • Size: 20.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.8.10 Linux/5.15.0-67-generic

File hashes

Hashes for khl-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 d6876bd890933ae741cf0f51ae4f60d05b520342eb01bcd2f96ccbf669885157
MD5 6b68b4506c9666d21293f6c79d32e0b8
BLAKE2b-256 58c5e12797e78dcd375d64890225333dfd29423062c1f9c88bc20e44021d70ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page