Skip to main content

Preparing russian hockey news for machine learning

Project description

Khl Logo

No Water - Ice Only

Preparing russian hockey news for machine learning.

Unify -> Simplify -> Preprocess text and feed your neural model.

Installation

Khl is available on PyPI:

$ pip install khl

It requires Python 3.8+ to run.

Usage

To get started right away with basic usage:

from khl import text_to_codes

coder = {
    '': 0,     # placeholder
    '???': 1,  # unknown
    '.': 2,
    'и': 3,
    'в': 4,
    '-': 5,
    ':': 6,
    'матч': 7,
    'за': 8,
    'забить': 9,
    'гол': 10,
    'per': 11,   # person entity
    'org': 12,   # organization entity
    'loc': 13,   # location entity
    'date': 14,  # date entity
    'против': 15,
    'год': 16,
    'pers': 17,  # few persons entity
    'orgs': 18,  # few organizations entity
    'свой': 19
}

text = """
    1 апреля 2023 года в Москве в матче ⅛ финала против „Спартака” Иван Иванов забил свой 100—й гол за карьеру.
    «Динамо Мск» - «Спартак» 2:1 ОТ (1:0 0:1 0:0 1:0) Голы забили: Иванов, Петров и Сидоров.
"""

codes = text_to_codes(
    text=text,
    coder=coder,
    stop_words_=["за", "и", "свой"],  # stop words to drop
    replace_ners_=True,               # replace named entities ("Иван Иванов" -> "per", "Спартак" -> "org", "Москва" -> "loc")
    replace_dates_=True,              # replace dates ("1 апреля 2023 года" -> "date")
    replace_penalties_=True,          # replace penalties ("5+20" -> "pen")
    exclude_unknown=True,             # drop lemma that not presented in coder
    max_len=20,                       # get sequence of codes of length 20
)
# codes = [0, 0, 0, 14, 4, 13, 4, 7, 15, 12, 11, 9, 10, 2, 18, 10, 9, 6, 17, 2]

text_to_codes is a very high level function. What's happens under hood see in Lower level usage.

What is coder?

coder is just a dictionary where each lemma is represented with unique integer code. Note that first two elements are reserved for placeholder and unknown elements.

It is possible to get coder from frequency dictionary file (see in Get lemmas coder). Frequency dictionary file is a json-file with dictionary where key is lemma and value is how many times this lemma occurred in your whole dataset. Preferably it should be sorted in descending order of values.
example_frequency_dictionary.json:

{
  ".": 1000,
  "и": 500,
  "в": 400,
  "-": 300,
  ":": 300,
  "матч": 290,
  "за": 250,
  "забить": 240,
  "гол": 230,
  "per": 200,
  "org": 150,
  "loc": 150,
  "date": 100,
  "против": 90,
  "год": 70,
  "pers": 40,
  "orgs": 30,
  "свой": 20
}

You could make and use your own frequency dictionary or download this dictionary created by myself.

Lower level usage

1. Make imports

from khl import stop_words
from khl import utils
from khl import preprocess

2. Get lemmas coder

coder = preprocess.get_coder("example_frequency_dictionary.json")

3. Define text

text = """
    1 апреля 2023 года в Москве в матче ⅛ финала против „Спартака” Иван Иванов забил свой 100—й гол за карьеру.
    «Динамо Мск» - «Спартак» 2:1 ОТ (1:0 0:1 0:0 1:0) Голы забили: Иванов, Петров и Сидоров.
"""

4. Unify

unified_text = utils.unify(text)
# "1 апреля 2023 года в Москве в матче 1/8 финала против 'Спартака' Иван Иванов забил свой 100-й гол за карьеру. 'Динамо Мск' - 'Спартак' 2:1 ОТ (1:0 0:1 0:0 1:0) Голы забили: Иванов, Петров и Сидоров."

5. Simplify

simplified_text = utils.simplify(
    text=unified_text,
    replace_ners_=True,
    replace_dates_=True,
    replace_penalties_=True,
)
# 'date в loc в матче финала против org per забил свой гол за карьеру. org org Голы забили: per per per.'

6. Lemmatize

lemmas = preprocess.lemmatize(text=simplified_text, stop_words_=stop_words)
# ['date', 'в', 'loc', 'в', 'матч', 'финал', 'против', 'org', 'per', 'забить', 'гол', 'карьера', '.', 'orgs', 'гол', 'забить', ':', 'pers', '.']

7. Transform to codes

codes = preprocess.lemmas_to_codes(
    lemmas=lemmas,
    coder=coder,
    exclude_unknown=True,
    max_len=20,
)
# [0, 0, 0, 14, 4, 13, 4, 7, 15, 12, 11, 9, 10, 2, 18, 10, 9, 6, 17, 2]

8. Transform to lemmas back (just to look which lemmas are presented in codes sequence)

print(
    preprocess.codes_to_lemmas(codes=codes, coder=coder)
)
# ['', '', '', 'date', 'в', 'loc', 'в', 'матч', 'против', 'org', 'per', 'забить', 'гол', '.', 'orgs', 'гол', 'забить', ':', 'pers', '.']

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

khl-2.0.0.tar.gz (21.7 kB view details)

Uploaded Source

Built Distribution

khl-2.0.0-py3-none-any.whl (20.4 kB view details)

Uploaded Python 3

File details

Details for the file khl-2.0.0.tar.gz.

File metadata

  • Download URL: khl-2.0.0.tar.gz
  • Upload date:
  • Size: 21.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.8.10 Linux/5.15.0-69-generic

File hashes

Hashes for khl-2.0.0.tar.gz
Algorithm Hash digest
SHA256 831f3af2172b6913f0a4d8868b7b835c8952b74fc49b38a3ba01b14e4d29851f
MD5 502f8f9a7d53513801a191817cab06f7
BLAKE2b-256 e8a1250df30b9a5b8e5e7a752d255ae9fa694c19e5536b0e579209d78346f8a5

See more details on using hashes here.

File details

Details for the file khl-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: khl-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 20.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.8.10 Linux/5.15.0-69-generic

File hashes

Hashes for khl-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e2ad13c8065253d6fe2fa403898c4a06986a750d8f68069b9f112d47e7eacb80
MD5 2adcd0db1e24ef73f61a8abf21239b86
BLAKE2b-256 41e48e7872a173860c2c4b3bdfa016b33af65868cd66268a2c51fd9c01c06783

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page