Skip to main content

This is an API mapping library for Kibana API to generate visualizations and dashboards automatically

Project description

Kibana API Mapping Library

Supported Versions Downloads

Development Requirements

I only use requests to perform HTTP requests and pure logic for all behaviour.

Installation

You can find this package in https://pypi.org/project/kibana-api/

pip install kibana-api

Usage and Examples

If you going to test every example, you should run the docker-compose.yml example(development section).

Take a note: every create action returns a <Requests> Object as a result of HTTP request

Configure Kibana Object:

URL = "http://localhost:5601"
USERNAME = "XXXX" 
PASSWORD = "XXXX"
# username and password are optional fields
kibana = Kibana(base_url=URL, username=USERNAME, password=PASSWORD)

Create Space

id = "demo"
name = "demo"
description = "descripcion del espacio de pruebas"
color = "#000000"
space = kibana.space(id=id, name=name, description=description, color=color)
space_response = space.create()
space_json = space_response.json()

Create Object (index-pattern)

pattern_json = {
    "title":"demo*",
    "timeFieldName": "@timestamp", #timefiledname is important, it taken as a reference to time
    "fields":"[]"
}
kibana = Kibana(base_url=URL, username=USERNAME, password=PASSWORD)
index_pattern_response = kibana.object(space_id="demo").create('index-pattern', attribs=pattern_json)
index_pattern_json = index_pattern.json()

Create Object (visualization)

type = "metric"
title = "Hello this is a basic metric visualization"
index_pattern_id = "XXXX-XXX-XXXX" # every visualization needs an index pattern to work
visualization = Visualization(type=type, title=title, index_pattern_id=index_pattern).create()
visualization_response = kibana.object(space_id="demo").create('visualization', body=visualization)
visualization_json = visualization_response.json()

Visualization Modelation

index_pattern = "XXXXX-XXXXXX-XXXXXX"
type = "line"
title = "Hello this is a basic line visualization"
visualization = Visualization(type=type, title=title, index_pattern_id=index_pattern)
visulization_model_json = visualization.create() # this operation returns a JSON body not a request response

Panel Modelation

width=48 
height=12
pos_x=0
pos_y=1
panel = Panel("panel_0", width, height, pos_x, pos_y, visualization_id=visualization_id)
panel_model_json = panel.create() # this operation returns a JSON body not a request response
references_model_json = panel.get_references() # this operation returns a JSON body not a request response

Create Object (dashboard)

index_pattern_id = "XXXXX-XXXXXX-XXXXXX"
type = "line"
title = "Hello this is a basic line visualization"
visualization = Visualization(type=type, title=title, index_pattern_id=index_pattern_id).create() # this operation returns a JSON body not a request response
visualization_response = kibana.object(space_id="demo").create('visualization', body=visualization)
visualization_json = visualization_response.json()
visualization_id = visualization_json["id"]

panel = Panel("panel_0", 48, 12, 0, 2, visualization_id=visualization_id)
panels = [panel.create()]
references = [panel.get_reference()]
dashboard = Dashboard(title="Demo Dashboard", panels=panels, references=references).create() # this operation returns a JSON body not a request response

dashboard_response = kibana.object(space_id=mock.space_id).create('dashboard', body=dashboard)
dashboard_json = dashboard_response.json()

List all objects

objects_response = kibana.object(space_id="demo").all() # All objects
objects_json = objects_response.json()
# Filter by types: "visualization", "dashboard", "search", "index-pattern", 
# "config", "timelion-sheet", "url", "query", "canvas-element", "canvas-workpad", "lens",
# "infrastructure-ui-source", "metrics-explorer-view", "inventory-view"
objects_response = kibana.object(space_id="demo").all(type="index-pattern") # Type in specific 
objects_json = objects_response.json()

List all spaces

spaces_response = kibana.space().all() # All spaces
spaces_json = spaces_response.json()

Import Objects

file = open("demo.ndjson", 'r')
response = kibana.object().loads(file=file)
file.close()

Development

Before starting you should run the docker-compose.yml file at tests folder (for testing purposes):

version: '2.2'

services:
  elastic:
    hostname: elasticsearch
    image: docker.elastic.co/elasticsearch/elasticsearch:${VERSION}
    container_name: elastic
    environment:
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
      - discovery.type=single-node
      - xpack.security.enabled=true
      - xpack.security.audit.enabled=true
      - ELASTIC_PASSWORD=${ELASTIC_PASSWORD}
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - elastic_volume:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic

  kibana:
    image: docker.elastic.co/kibana/kibana:${VERSION}
    container_name: kibana
    ports:
      - 5601:5601
    environment:
      ELASTICSEARCH_URL: http://elasticsearch:9200
      ELASTICSEARCH_USERNAME: ${ELASTIC_USERNAME}
      ELASTICSEARCH_PASSWORD: ${ELASTIC_PASSWORD}
      ADMIN_PRIVILEGES: "true"
    networks:
      - elastic

volumes:
  elastic_volume:
    driver: local

networks:
  elastic:
    driver: bridge

The .env file cointains:

VERSION=7.8.0
ELASTIC_USERNAME=elastic
ELASTIC_PASSWORD=elastic

Once the container is up you can validate every unit test:

python -m unittest tests.tests 

Contributing

Yes fella, you know how ;)

Contact Me

My blog: cr0wg4n

Twitter: cr0wg4n

Linkedin: cr0wg4n

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kibana-api-0.0.4.tar.gz (10.7 kB view details)

Uploaded Source

File details

Details for the file kibana-api-0.0.4.tar.gz.

File metadata

  • Download URL: kibana-api-0.0.4.tar.gz
  • Upload date:
  • Size: 10.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for kibana-api-0.0.4.tar.gz
Algorithm Hash digest
SHA256 a5db73300ac8142b805878249683d3dd10ff7c87ad0a61523799e4a986aee3a7
MD5 8eee9136323d369c91fe26bb6688d233
BLAKE2b-256 a457e28646516790b2fc3f645138f78ed0087fe3c33364f61424f45a6b05c29f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page