Skip to main content

Python client for Kili Technology labeling tool

Project description

Kili Python SDK

Python 3.8 pre-commit GitHub release (latest by date)


SDK Reference: https://python-sdk-docs.kili-technology.com/

Kili Documentation: https://docs.kili-technology.com/docs

App: https://cloud.kili-technology.com/label/

Website: https://kili-technology.com/


What is Kili?

Kili is a platform that empowers a data-centric approach to Machine Learning through quality training data creation. It provides collaborative data annotation tools and APIs that enable quick iterations between reliable dataset building and model training. More info here.

Annotation tools examples

Named Entities Extraction and Relation PDF classification and bounding-box Object detection (bounding-box)

and many more.

What is Kili Python SDK?

Kili Python SDK is the Python client for the Kili platform. It allows to query and manipulate the main entities available in Kili, like projects, assets, labels, api keys...

It comes with several tutorials that demonstrate how to use it in the most frequent use cases.

Requirements

  • Python >= 3.8
  • Create and copy a Kili API key
  • Add the KILI_API_KEY variable in your bash environment (or in the settings of your favorite IDE) by pasting the API key value you copied above:
export KILI_API_KEY='<your api key value here>'

Installation

Install the Kili client with pip:

pip install kili

If you want to contribute, here are the installation steps.

Usage

Instantiate the Kili client:

from kili.client import Kili
kili = Kili()
# You can now use the Kili client!

Note that you can also pass the API key as an argument of the Kili initialization:

kili = Kili(api_key='<your api key value here>')

For more details, read the SDK reference or the Kili documentation.

Tutorials

Check out our tutorials! They will guide you through the main features of the Kili client.

You can find several other recipes in this folder.

Examples

Here is a sample of the operations you can do with the Kili client:

Creating an annotation project

json_interface = {
    "jobs": {
        "CLASSIFICATION_JOB": {
            "mlTask": "CLASSIFICATION",
            "content": {
                "categories": {
                    "RED": {"name": "Red"},
                    "BLACK": {"name": "Black"},
                    "WHITE": {"name": "White"},
                    "GREY": {"name": "Grey"}},
                "input": "radio"
            },
            "instruction": "Color"
        }
    }
}
project_id = kili.create_project(
    title="Color classification",
    description="Project ",
    input_type="IMAGE",
    json_interface=json_interface
)["id"]

Importing data to annotate

assets = [
    {
        "externalId": "example 1",
        "content": "https://images.caradisiac.com/logos/3/8/6/7/253867/S0-tesla-enregistre-d-importantes-pertes-au-premier-trimestre-175948.jpg",
    },
    {
        "externalId": "example 2",
        "content": "https://img.sportauto.fr/news/2018/11/28/1533574/1920%7C1280%7Cc096243e5460db3e5e70c773.jpg",
    },
    {
        "externalId": "example 3",
        "content": "./recipes/img/man_on_a_bike.jpeg",
    },
]

external_id_array = [a.get("externalId") for a in assets]
content_array = [a.get("content") for a in assets]

kili.append_many_to_dataset(
    project_id=project_id,
    content_array=content_array,
    external_id_array=external_id_array,
)

See the detailed example in this tutorial.

Importing predictions

prediction_examples = [
    {
        "external_id": "example 1",
        "json_response": {
            "CLASSIFICATION_JOB": {
                "categories": [{"name": "GREY", "confidence": 46}]
            }
        },
    },
    {
        "external_id": "example 2",
        "json_response": {
            "CLASSIFICATION_JOB": {
                "categories": [{"name": "WHITE", "confidence": 89}]
            }
        },
    }
]

kili.create_predictions(
    project_id=project_id,
    external_id_array=[p["external_id"] for p in prediction_examples],
    json_response_array=[p["json_response"] for p in prediction_examples],
    model_name="My SOTA model"
)

See detailed examples in this recipe.

Exporting labels

kili.export_labels("your_project_id", "export.zip", "yolo_v4")

See a detailed example in this tutorial.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kili-2.162.2.tar.gz (223.5 kB view details)

Uploaded Source

Built Distribution

kili-2.162.2-py3-none-any.whl (321.8 kB view details)

Uploaded Python 3

File details

Details for the file kili-2.162.2.tar.gz.

File metadata

  • Download URL: kili-2.162.2.tar.gz
  • Upload date:
  • Size: 223.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for kili-2.162.2.tar.gz
Algorithm Hash digest
SHA256 6ff97461b06e8f5ec4730451ae54a351e6f3faf97dc5683470220b5fccb0a966
MD5 dec944e712e0e0766bd463cef3cb4e4c
BLAKE2b-256 93289d273f085ddcbd0ab1814e568a66f48454853c6ca849f9d6891e2684ca79

See more details on using hashes here.

File details

Details for the file kili-2.162.2-py3-none-any.whl.

File metadata

  • Download URL: kili-2.162.2-py3-none-any.whl
  • Upload date:
  • Size: 321.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for kili-2.162.2-py3-none-any.whl
Algorithm Hash digest
SHA256 51b27adc728141488a23aafefb3300c9151dd4f30ebf3849c2a156400e23b7d1
MD5 5903283d6def641ab5e5d36d0e21586e
BLAKE2b-256 0b99ae43cc5c85b5c285082b3c68d2daf82ec7d2c6015900b8ba1e3b5a5ac016

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page