Skip to main content

Python client for Kili Technology labeling tool

Project description

Kili Python SDK

Python 3.8 pre-commit GitHub release (latest by date)


SDK Reference: https://python-sdk-docs.kili-technology.com/

Kili Documentation: https://docs.kili-technology.com/docs

App: https://cloud.kili-technology.com/label/

Website: https://kili-technology.com/


What is Kili?

Kili is a platform that empowers a data-centric approach to Machine Learning through quality training data creation. It provides collaborative data annotation tools and APIs that enable quick iterations between reliable dataset building and model training. More info here.

Annotation tools examples

Named Entities Extraction and Relation PDF classification and bounding-box Object detection (bounding-box)

and many more.

What is Kili Python SDK?

Kili Python SDK is the Python client for the Kili platform. It allows to query and manipulate the main entities available in Kili, like projects, assets, labels, api keys...

It comes with several tutorials that demonstrate how to use it in the most frequent use cases.

Requirements

  • Python >= 3.8
  • Create and copy a Kili API key
  • Add the KILI_API_KEY variable in your bash environment (or in the settings of your favorite IDE) by pasting the API key value you copied above:
export KILI_API_KEY='<your api key value here>'

Installation

Install the Kili client with pip:

pip install kili

If you want to contribute, here are the installation steps.

Usage

Instantiate the Kili client:

from kili.client import Kili
kili = Kili()
# You can now use the Kili client!

Note that you can also pass the API key as an argument of the Kili initialization:

kili = Kili(api_key='<your api key value here>')

For more details, read the SDK reference or the Kili documentation.

Tutorials

Check out our tutorials! They will guide you through the main features of the Kili client.

You can find several other recipes in this folder.

Examples

Here is a sample of the operations you can do with the Kili client:

Creating an annotation project

json_interface = {
    "jobs": {
        "CLASSIFICATION_JOB": {
            "mlTask": "CLASSIFICATION",
            "content": {
                "categories": {
                    "RED": {"name": "Red"},
                    "BLACK": {"name": "Black"},
                    "WHITE": {"name": "White"},
                    "GREY": {"name": "Grey"}},
                "input": "radio"
            },
            "instruction": "Color"
        }
    }
}
project_id = kili.create_project(
    title="Color classification",
    description="Project ",
    input_type="IMAGE",
    json_interface=json_interface
)["id"]

Importing data to annotate

assets = [
    {
        "externalId": "example 1",
        "content": "https://images.caradisiac.com/logos/3/8/6/7/253867/S0-tesla-enregistre-d-importantes-pertes-au-premier-trimestre-175948.jpg",
    },
    {
        "externalId": "example 2",
        "content": "https://img.sportauto.fr/news/2018/11/28/1533574/1920%7C1280%7Cc096243e5460db3e5e70c773.jpg",
    },
    {
        "externalId": "example 3",
        "content": "./recipes/img/man_on_a_bike.jpeg",
    },
]

external_id_array = [a.get("externalId") for a in assets]
content_array = [a.get("content") for a in assets]

kili.append_many_to_dataset(
    project_id=project_id,
    content_array=content_array,
    external_id_array=external_id_array,
)

See the detailed example in this tutorial.

Importing predictions

prediction_examples = [
    {
        "external_id": "example 1",
        "json_response": {
            "CLASSIFICATION_JOB": {
                "categories": [{"name": "GREY", "confidence": 46}]
            }
        },
    },
    {
        "external_id": "example 2",
        "json_response": {
            "CLASSIFICATION_JOB": {
                "categories": [{"name": "WHITE", "confidence": 89}]
            }
        },
    }
]

kili.create_predictions(
    project_id=project_id,
    external_id_array=[p["external_id"] for p in prediction_examples],
    json_response_array=[p["json_response"] for p in prediction_examples],
    model_name="My SOTA model"
)

See detailed examples in this recipe.

Exporting labels

kili.export_labels("your_project_id", "export.zip", "yolo_v4")

See a detailed example in this tutorial.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kili-2.162.0.tar.gz (223.0 kB view details)

Uploaded Source

Built Distribution

kili-2.162.0-py3-none-any.whl (321.3 kB view details)

Uploaded Python 3

File details

Details for the file kili-2.162.0.tar.gz.

File metadata

  • Download URL: kili-2.162.0.tar.gz
  • Upload date:
  • Size: 223.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for kili-2.162.0.tar.gz
Algorithm Hash digest
SHA256 e88e34c99bfbc830cf37ad9f14c55f5c7e5f653b79c550f334934013e876f28e
MD5 1d3e07843ee52eb579ea9a4fed2a5adb
BLAKE2b-256 82c74f212b1b05a728e8e2510d509808d573440407227d8bd3a27899b2cc3ef4

See more details on using hashes here.

File details

Details for the file kili-2.162.0-py3-none-any.whl.

File metadata

  • Download URL: kili-2.162.0-py3-none-any.whl
  • Upload date:
  • Size: 321.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for kili-2.162.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0f97853e007cd6de032933dadb6d00f43c712ed432c93853d2c35d0a62c3cce5
MD5 f6c853699d1764654357224f3c46fd6a
BLAKE2b-256 da0dfe6d450245b72022c0eb3a5fd88fb91b7c401afbe585b282580b21d017b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page