Skip to main content

A composable experience replay buffer library

Project description

kiox: A composable experience replay buffer library

test codecov Maintainability MIT

kiox is a composable experience replay buffer library.

from kiox.kiox import Kiox
from kiox.transition_buffer import FIFOTransitionBuffer
from kiox.transition_factory import SimpleTransitionFactory

kiox = Kiox(FIFOTransitionBuffer(1000), SimpleTransitionFactory())

# collect experiences
kiox.collect(<obsrvation>, <action>, <reward>, <terminal>)

# sample batch
batch = kiox.sample(256)

key features

:zap: Composable experience replay buffer

kiox is composable and fully Pythonic library. You can add your own sampling algorithms and inject sampling-time logics (e.g. loading image data from disk just before sampling).

:beginner: User-friendly API

kiox provides user-friendly API so that you can instantly incorporate kiox with your RL algorithms.

:rocket: Distributed RL training support

kiox supports distributed RL training by using ProtocolBuffer and gRPC. Your custom modules will work without any code changes.

installation

kiox supports Linux, macOS and Windows.

$ pip install kiox

examples

Many extensive examples are available.

distributed training

In actor process:

from kiox.distributed.step_sender import StepSender
sender = StepSender("localhost", 8000, 1)
sender.collect(<obsrvation>, <action>, <reward>, <terminal>)

In trainer process:

# trainer process
from kiox.distributed.server import KioxServer

def transition_buffer_builder():
    return FIFOTransitionBuffer(1000)

def transition_factory_builder():
    return SimpleTransitionFactory()

# setup server
server = KioxServer(
    host="localhost",
    port=8000,
    observation_shape=(4,),
    action_shape=(1,),
    reward_shape=(1,),
    batch_size=8,
    transition_buffer_builder=transition_buffer_builder,
    transition_factory_builder=transition_factory_builder,
)
server.start()

# sample batch
batch = server.sample()

from offline data

# from offline data
from kiox.offline import create_simple_kiox_from_data
kiox = create_simple_kiox_from_data(
  observations=<observations>,
  actions=<actions>,
  rewards=<rewards>,
  terminals=<terminals>,
)

build

$ pip install grpcio-tools
$ scripts/build-protobuf
$ pip install -e .

contributions

Any kind of contribution to kiox would be highly appreciated! Please check the contribution guide.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kiox-0.1.0.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

kiox-0.1.0-py3-none-any.whl (26.6 kB view details)

Uploaded Python 3

File details

Details for the file kiox-0.1.0.tar.gz.

File metadata

  • Download URL: kiox-0.1.0.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for kiox-0.1.0.tar.gz
Algorithm Hash digest
SHA256 5c45cd51e5c2a8384e12add8c5200cf6a467d3fd867200ab6e19fcc7bacfaa24
MD5 b825086c59dbc79f4a6221c043efad32
BLAKE2b-256 2f94c1c00f190b2f079119c9a63713012d0a14104328869352f52bf3d30fb13f

See more details on using hashes here.

File details

Details for the file kiox-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: kiox-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 26.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for kiox-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7a28dd69c222fe2fb75cbc7cf1687a02f7f463b4affe2b95d0369bac07bfdcab
MD5 659cdef662fe8e42e2b7e25fac7f81f2
BLAKE2b-256 76de756ade2c356945e9f7e4be8510a85cb41041e5b67765138b65281c67a644

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page