A composable experience replay buffer library
Project description
kiox: A composable experience replay buffer library
kiox is a composable experience replay buffer library.
from kiox.kiox import Kiox
from kiox.transition_buffer import FIFOTransitionBuffer
from kiox.transition_factory import SimpleTransitionFactory
kiox = Kiox(FIFOTransitionBuffer(1000), SimpleTransitionFactory())
# collect experiences
kiox.collect(<obsrvation>, <action>, <reward>, <terminal>)
# sample batch
batch = kiox.sample(256)
key features
:zap: Composable experience replay buffer
kiox is composable and fully Pythonic library. You can add your own sampling algorithms and inject sampling-time logics (e.g. loading image data from disk just before sampling).
:beginner: User-friendly API
kiox provides user-friendly API so that you can instantly incorporate kiox with your RL algorithms.
:rocket: Distributed RL training support
kiox supports distributed RL training by using ProtocolBuffer and gRPC. Your custom modules will work without any code changes.
installation
kiox supports Linux, macOS and Windows.
$ pip install kiox
examples
Many extensive examples are available.
distributed training
In actor process:
from kiox.distributed.step_sender import StepSender
sender = StepSender("localhost", 8000, 1)
sender.collect(<obsrvation>, <action>, <reward>, <terminal>)
In trainer process:
# trainer process
from kiox.distributed.server import KioxServer
def transition_buffer_builder():
return FIFOTransitionBuffer(1000)
def transition_factory_builder():
return SimpleTransitionFactory()
# setup server
server = KioxServer(
host="localhost",
port=8000,
observation_shape=(4,),
action_shape=(1,),
reward_shape=(1,),
batch_size=8,
transition_buffer_builder=transition_buffer_builder,
transition_factory_builder=transition_factory_builder,
)
server.start()
# sample batch
batch = server.sample()
from offline data
# from offline data
from kiox.offline import create_simple_kiox_from_data
kiox = create_simple_kiox_from_data(
observations=<observations>,
actions=<actions>,
rewards=<rewards>,
terminals=<terminals>,
)
build
$ pip install grpcio-tools
$ scripts/build-protobuf
$ pip install -e .
contributions
Any kind of contribution to kiox would be highly appreciated! Please check the contribution guide.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file kiox-0.1.0.tar.gz
.
File metadata
- Download URL: kiox-0.1.0.tar.gz
- Upload date:
- Size: 18.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5c45cd51e5c2a8384e12add8c5200cf6a467d3fd867200ab6e19fcc7bacfaa24 |
|
MD5 | b825086c59dbc79f4a6221c043efad32 |
|
BLAKE2b-256 | 2f94c1c00f190b2f079119c9a63713012d0a14104328869352f52bf3d30fb13f |
File details
Details for the file kiox-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: kiox-0.1.0-py3-none-any.whl
- Upload date:
- Size: 26.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7a28dd69c222fe2fb75cbc7cf1687a02f7f463b4affe2b95d0369bac07bfdcab |
|
MD5 | 659cdef662fe8e42e2b7e25fac7f81f2 |
|
BLAKE2b-256 | 76de756ade2c356945e9f7e4be8510a85cb41041e5b67765138b65281c67a644 |