An all-in-one tool for fitting kinetic models using spectral and other state data
Project description
KIPET is a Python package designed to simulate, and estimate parameters from chemical reaction systems through the use of maximum likelihood principles, large-scale nonlinear programming and discretization methods.
- Documentation: - https://kipet.readthedocs.io
- Examples and Tutorials - https://github.com/kwmcbride/kipet_examples
- Source code: - https://github.com/salvadorgarciamunoz/kipet
- Bug reports: - https://github.com/salvadorgarciamunoz/kipet/issues
It has the following functionality:
- Simulate a reactive system described with DAEs
- Solve the DAE system with collocation methods
- Pre-process data
- Estimate variances of noise from the model and measurements
- Estimate kinetic parameters from spectra or concentration data across 1 or multiple experiments with different conditions
- Estimate confidence intervals of the estimated parameters
- Able to estimate variances and parameters for problems where there is dosing / inputs into the system
- Provide a set of tools for estimability analysis
- Allows for wavelength selection of most informative wavelengths from a dataset
- Visualize results
Installation
A packaged version of KIPET can be installed using:
pip install kipet
If you run into errors when installing KIPET using pip, try installing the following packages beforehand:
pip install Cython numpy six
pip install kipet
You may also install KIPET with poetry (this method is recommended):
poetry add kipet
Finally, if you are using Anaconda, KIPET can be installed using:
conda install -c kwmcbride kipet
Additionally, KIPET may be installed directly from the repository (if you want the latest version, simply install the desired branch (#branch)):
poetry add git+http://github.com/salvadorgarciamunoz/kipet#master
Naturally you can simply clone or download the repository.
License
GPL-3
Authors
- Kevin McBride - Carnegie Mellon University
- Kuan-Han Lin - Carnegie Mellon University
- Christina Schenk - Basque Center for Applied Mathematics
- Michael Short - University of Surrey
- Jose Santiago Rodriguez - Purdue University
- David M. Thierry - Carnegie Mellon University
- Salvador García-Muñoz - Eli Lilly
- Lorenz T. Biegler - Carnegie Mellon University
Please cite
-
C. Schenk, M. Short, J.S. Rodriguez, D. Thierry, L.T. Biegler, S. García-Muñoz, W. Chen (2020) Introducing KIPET: A novel open-source software package for kinetic parameter estimation from experimental datasets including spectra, Computers & Chemical Engineering, 134, 106716. https://doi.org/10.1016/j.compchemeng.2019.106716
-
M. Short, L.T. Biegler, S. García-Muñoz, W. Chen (2020) Estimating variances and kinetic parameters from spectra across multiple datasets using KIPET, Chemometrics and Intelligent Laboratory Systems, https://doi.org/10.1016/j.chemolab.2020.104012
-
M. Short, C. Schenk, D. Thierry, J.S. Rodriguez, L.T. Biegler, S. García-Muñoz (2019) KIPET–An Open-Source Kinetic Parameter Estimation Toolkit, Computer Aided Chemical Engineering, 47, 299-304.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file kipet-0.1.531.tar.gz
.
File metadata
- Download URL: kipet-0.1.531.tar.gz
- Upload date:
- Size: 163.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.4 CPython/3.8.2 Linux/4.10.0-38-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf7207549a407bc52f8c03205b162602c0045992350ce75f93f674d952cf5349 |
|
MD5 | 13eed46db069477419779e3e79a83eae |
|
BLAKE2b-256 | c3b556b476d34f25163c9654b34d3ec958486f019f4acfc19a88707201faba7e |
File details
Details for the file kipet-0.1.531-py3-none-any.whl
.
File metadata
- Download URL: kipet-0.1.531-py3-none-any.whl
- Upload date:
- Size: 193.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.4 CPython/3.8.2 Linux/4.10.0-38-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 156afa057ecc0e9ce55f1249fcb1948e62286b6c3119f44b94617ee90d4b88b0 |
|
MD5 | faa23fcb625f64695bb35a5d6728215c |
|
BLAKE2b-256 | 239b66480939ed169db63f0a488c90c77e141f1e2d311d76ef615424fa9dd6bf |