Skip to main content

Scaffold library

Project description

KLYM Telemetry

A small library to add instrumentation in KLYM apps.

Installation


pip install git+https://github.com/Dandresfsoto/klym_telemetry.git#egg=klym_telemetry

Get started

Instrumenting a fastapi app

  1. Import klym instrumenter
from klym_telemetry.instrumenters import instrument_app
  1. Import instrument decorator
from klym_telemetry.utils import instrument
  1. Initialize automatic instrumentation
instrument_app(app_type='fastapi', app=app, service_name="test-klym-microservice", endpoint="http://localhost:4317")

Full example:

import time



from fastapi import FastAPI

from klym_telemetry.instrumenters import instrument_app

from klym_telemetry.utils import instrument, klym_telemetry



app = FastAPI()

instrument_app(app_type='fastapi', app=app, service_name="test-klym-microservice", endpoint="http://localhost:4317")





@instrument(private_methods=True, attributes={"description": "Class to say hello"})

class Hello:



    @instrument(span_name="Get start message (private method)")

    def _get_start_message(self):

        return "Hello"



    def say_hello(self):

        return {"message": self._get_start_message() + " World"}



    def say_hello_with_name(self, name: str):

        return {"message": f"{self._get_start_message()} {name}"}





@app.get("/")

def root():

    klym_telemetry.add_event_curr_span("Start sleeping")  # Custom event example

    for _ in range(10):

        time.sleep(0.2)

    klym_telemetry.add_event_curr_span("Finished sleeping")

    return Hello().say_hello()





@app.get("/hello/{name}")

@instrument(span_name="Say hello with name", attributes={"description": "Class to say hello asynchrounously"})

async def say_hello(name: str):

    return {"message": f"Hello {name}"}

Instrumenting a celery app

  1. Import klym instrumenter
from klym_telemetry.instrumenters import instrument_app
  1. Import celery signal when worker starts
from celery.signals import worker_init
  1. Initialize automatic instrumentation
instrument_app(app_type='celery', service_name="integrations", endpoint="http://localhost:4317")

Full example:

import os



from celery import Celery

from celery.signals import worker_init

from klym_telemetry.instrumenters import instrument_app



# set the default Django settings module for the 'celery' program.

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'core.settings.local')



app = Celery('integrations')



# Using a string here means the worker doesn't have to serialize

# the configuration object to child processes.

# - namespace='CELERY' means all celery-related configuration keys

#   should have a `CELERY_` prefix.

app.config_from_object('django.conf:settings', namespace='CELERY')



app.autodiscover_tasks()



app.conf.update(

    worker_pool_restarts=True,

)





@worker_init.connect()

def init_celery_tracing(*args, **kwargs):

    instrument_app(app_type='celery', service_name="integrations", endpoint="http://localhost:4317")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

klym-telemetry-0.1.9.tar.gz (8.5 kB view details)

Uploaded Source

File details

Details for the file klym-telemetry-0.1.9.tar.gz.

File metadata

  • Download URL: klym-telemetry-0.1.9.tar.gz
  • Upload date:
  • Size: 8.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for klym-telemetry-0.1.9.tar.gz
Algorithm Hash digest
SHA256 6577285c9a17e78bf11546a09a1a27d1099b7bbfb78d061065f2eedb230e8132
MD5 c78fc072149d75b1b090e7270c48302b
BLAKE2b-256 7bdde613f13a78bb995a6026f96c7123ff3ff305a5c0187e9e15cc5ecd37bc59

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page