Skip to main content

A package for creating subclusters of KMeansSam clusters and merging them with great flexibility

Project description

k-means-sam

k-means sub-clustering and merging library for strong control and flexibility over k-means clustering

The operations provided in k-means-sam are :

  1. Making k-means clusters
  2. Querying clusters by id
  3. Sub-clustering k-means clusters by specifying cluster id
  4. Merging k-means clusters by specifying cluster ids

USAGE -

Import kmeans-sam

import kmeans_sam.kmeans_sam as ks

Making clusters

Steps -

  1. Create a k-means model and perform .fit() operations
  2. Create a kmeans-sam object
  3. kmeans-sam.clusterize(model = kmeans_mode, dataframe = df, predictors = [column_names])

Code:

## Create data for clustering
X, _ = make_blobs(n_samples=10, centers=3, n_features=4)
df = pd.DataFrame(X, columns=['Feat_1', 'Feat_2', 'Feat_3', 'Feat_4'])
## Create KMeans model
kmeans = KMeans(n_clusters=3)
kmeans.fit(df[['Feat_1', 'Feat_2', 'Feat_3', 'Feat_4']])
## Create KMeansSam object
kmeans_sam = ks.KMeansSam()
## Create KMeansSam clusters. parameters : kmeans model, dataframe, list of column names
clusters = kmeans_sam.clusterize(kmeans, df, ['Feat_1', 'Feat_2', 'Feat_3', 'Feat_4'])
print(clusters)

Querying cluster by id

Code:

## Fetched all the clusters with id
clusters = kmeans_sam.get_all_clusters()
print(kmeans_sam.get_cluster(2))

Sub-clustering k-means clusters by specifying cluster id

kmeans = KMeans(n_clusters=2)
kmeans.fit(df[['Feat_1', 'Feat_2', 'Feat_3', 'Feat_4']])
## parameters : kmeans model, cluster_id, list of column names
print(kmeans_sam.subclusterize(kmeans, 0, ['Feat_1', 'Feat_2', 'Feat_3', 'Feat_4']))

Merging clusters by cluster_ids

Code:

print(kmeans_sam.merge_cluster([0, 2]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kmeans_sam-0.1.5.tar.gz (2.6 kB view hashes)

Uploaded Source

Built Distribution

kmeans_sam-0.1.5-py3-none-any.whl (2.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page