Skip to main content

Analyzing the evolution of ideas using citation analysis

Project description

This repository contains the code and data I used to analyze the deaths of a million citations in Sociology articles. The repository provides code and documentation for producing all analyses and figures in the final paper.

Installation

  1. Install Python 3.7
  2. Install Build Tools for Visual Studio
  3. Run pip install science2-amcgail

Quick start

The following command starts jupyterlab in the base directory of this repository. This is a good place to start.

python -m science2 start

Developing

If you want to contribute edits of your own, fork this repository into your own GitHub account, make the changes, and submit a request for me to incorporate the code (a "pull request"). This process is really easy with GitHub Desktop (tutorial here).

There is a lot to do! If you find this useful to your work, and would like to contribute (even to the following list of possible next steps) but can't figure out how, please don't hesitate to reach out. My website is here, Twitter here.

Aimed completion by 5/22/2020 (ben rosche)

  • analyses complete, with explanations, annotations, and graphs

Aimed completion by 5/29/2020 (committee)

  • literature review is tight, written, boom. everything down. finish it.

Aimed completion by 6/5/2020 (presentation)

  • Externalizing data from the Git repository, so it can be dynamically downloaded / uploaded via AWS
  • trimming the paper and preparing it for publication

Possible projects

  • The documentation for this project can always be improved. This is typically through people reaching out to me when they have issues. Please feel free.
  • An object-oriented model for handling context would prevent the need for so much variable-passing between functions, reduce total code volume, and improve readability.
  • Different datasets and sources could be incorporated, if you have the need, in addition to JSTOR and WoS.
  • If you produce precomputed binaries and have an idea of how we could incorporate the sharing of these binaries within this library, please DM me or something. That would be great.
  • All analyses can be generalized to any counted variable of the citations. This wouldn't be tough, and would have a huge payout.
  • It would be amazing if we could make a graphical interface for this.
    • user simply imports data, chooses the analyses they want to run, fill in configuration parameters and press "go"
    • the output is a PDF with the code, visualizations, and explanations for a given analysis
    • behind the scenes, all this GUI does is run nbconvert
    • also could allow users to regenerate any/all analyses for each dataset with the click of a button
    • could provide immediate access to online archives, either to download or upload similar count datasets

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

knowknow-amcgail-0.1.2.tar.gz (6.8 MB view details)

Uploaded Source

Built Distribution

knowknow_amcgail-0.1.2-py3-none-any.whl (4.1 MB view details)

Uploaded Python 3

File details

Details for the file knowknow-amcgail-0.1.2.tar.gz.

File metadata

  • Download URL: knowknow-amcgail-0.1.2.tar.gz
  • Upload date:
  • Size: 6.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.5

File hashes

Hashes for knowknow-amcgail-0.1.2.tar.gz
Algorithm Hash digest
SHA256 5a27bfb9fd3fd54b378993681ca460582debb4a4180a0d0ffd631e434f21aa5f
MD5 c0526598b32ef81155ef681af5c66c3c
BLAKE2b-256 0d688dea2ac321c53e94a64ac3b2819753593492b03378db2767e4814f769232

See more details on using hashes here.

File details

Details for the file knowknow_amcgail-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: knowknow_amcgail-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.5

File hashes

Hashes for knowknow_amcgail-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d9a3e7d6cd2f00fb0fa083a943143e3d343c7f7da9de0c2059c51384be2d51c0
MD5 4b7cfb536a43c88813326a63b36016e3
BLAKE2b-256 a486a904b23ea16fb46c60981a5a31caaa1de7bce1761d2d412f32a17a54589c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page