Skip to main content

Add your description here

Project description

๐ŸŒฟ Konoha: Simple wrapper of Japanese Tokenizers

Open In Colab

GitHub stars

Downloads Downloads Downloads

Build Status Documentation Status PyPI - Python Version PyPI GitHub Issues GitHub Pull Requests

Konoha is a Python library for providing easy-to-use integrated interface of various Japanese tokenizers, which enables you to switch a tokenizer and boost your pre-processing.

Supported tokenizers

Also, konoha provides rule-based tokenizers (whitespace, character) and a rule-based sentence splitter.

Quick Start with Docker

Simply run followings on your computer:

docker run --rm -p 8000:8000 -t himkt/konoha  # from DockerHub

Or you can build image on your machine:

git clone https://github.com/himkt/konoha  # download konoha
cd konoha && docker-compose up --build  # build and launch container

Tokenization is done by posting a json object to localhost:8000/api/v1/tokenize. You can also batch tokenize by passing texts: ["๏ผ‘ใค็›ฎใฎๅ…ฅๅŠ›", "๏ผ’ใค็›ฎใฎๅ…ฅๅŠ›"] to localhost:8000/api/v1/batch_tokenize.

(API documentation is available on localhost:8000/redoc, you can check it using your web browser)

Send a request using curl on your terminal. Note that a path to an endpoint is changed in v4.6.4. Please check our release note (https://github.com/himkt/konoha/releases/tag/v4.6.4).

$ curl localhost:8000/api/v1/tokenize -X POST -H "Content-Type: application/json" \
    -d '{"tokenizer": "mecab", "text": "ใ“ใ‚Œใฏใƒšใƒณใงใ™"}'

{
  "tokens": [
    [
      {
        "surface": "ใ“ใ‚Œ",
        "part_of_speech": "ๅ่ฉž"
      },
      {
        "surface": "ใฏ",
        "part_of_speech": "ๅŠฉ่ฉž"
      },
      {
        "surface": "ใƒšใƒณ",
        "part_of_speech": "ๅ่ฉž"
      },
      {
        "surface": "ใงใ™",
        "part_of_speech": "ๅŠฉๅ‹•่ฉž"
      }
    ]
  ]
}

Installation

I recommend you to install konoha by pip install 'konoha[all]'.

  • Install konoha with a specific tokenizer: pip install 'konoha[(tokenizer_name)].
  • Install konoha with a specific tokenizer and remote file support: pip install 'konoha[(tokenizer_name),remote]'

If you want to install konoha with a tokenizer, please install konoha with a specific tokenizer (e.g. konoha[mecab], konoha[sudachi], ...etc) or install tokenizers individually.

Example

Word level tokenization

from konoha import WordTokenizer

sentence = '่‡ช็„ถ่จ€่ชžๅ‡ฆ็†ใ‚’ๅ‹‰ๅผทใ—ใฆใ„ใพใ™'

tokenizer = WordTokenizer('MeCab')
print(tokenizer.tokenize(sentence))
# => [่‡ช็„ถ, ่จ€่ชž, ๅ‡ฆ็†, ใ‚’, ๅ‹‰ๅผท, ใ—, ใฆ, ใ„, ใพใ™]

tokenizer = WordTokenizer('Sentencepiece', model_path="data/model.spm")
print(tokenizer.tokenize(sentence))
# => [โ–, ่‡ช็„ถ, ่จ€่ชž, ๅ‡ฆ็†, ใ‚’, ๅ‹‰ๅผท, ใ—, ใฆใ„ใพใ™]

For more detail, please see the example/ directory.

Remote files

Konoha supports dictionary and model on cloud storage (currently supports Amazon S3). It requires installing konoha with the remote option, see Installation.

# download user dictionary from S3
word_tokenizer = WordTokenizer("mecab", user_dictionary_path="s3://abc/xxx.dic")
print(word_tokenizer.tokenize(sentence))

# download system dictionary from S3
word_tokenizer = WordTokenizer("mecab", system_dictionary_path="s3://abc/yyy")
print(word_tokenizer.tokenize(sentence))

# download model file from S3
word_tokenizer = WordTokenizer("sentencepiece", model_path="s3://abc/zzz.model")
print(word_tokenizer.tokenize(sentence))

Sentence level tokenization

from konoha import SentenceTokenizer

sentence = "็งใฏ็Œซใ ใ€‚ๅๅ‰ใชใ‚“ใฆใ‚‚ใฎใฏใชใ„ใ€‚ใ ใŒ๏ผŒใ€Œใ‹ใ‚ใ„ใ„ใ€‚ใใ‚Œใงๅๅˆ†ใ ใ‚ใ†ใ€ใ€‚"

tokenizer = SentenceTokenizer()
print(tokenizer.tokenize(sentence))
# => ['็งใฏ็Œซใ ใ€‚', 'ๅๅ‰ใชใ‚“ใฆใ‚‚ใฎใฏใชใ„ใ€‚', 'ใ ใŒ๏ผŒใ€Œใ‹ใ‚ใ„ใ„ใ€‚ใใ‚Œใงๅๅˆ†ใ ใ‚ใ†ใ€ใ€‚']

You can change symbols for a sentence splitter and bracket expression.

  1. sentence splitter
sentence = "็งใฏ็Œซใ ใ€‚ๅๅ‰ใชใ‚“ใฆใ‚‚ใฎใฏใชใ„๏ผŽใ ใŒ๏ผŒใ€Œใ‹ใ‚ใ„ใ„ใ€‚ใใ‚Œใงๅๅˆ†ใ ใ‚ใ†ใ€ใ€‚"

tokenizer = SentenceTokenizer(period="๏ผŽ")
print(tokenizer.tokenize(sentence))
# => ['็งใฏ็Œซใ ใ€‚ๅๅ‰ใชใ‚“ใฆใ‚‚ใฎใฏใชใ„๏ผŽ', 'ใ ใŒ๏ผŒใ€Œใ‹ใ‚ใ„ใ„ใ€‚ใใ‚Œใงๅๅˆ†ใ ใ‚ใ†ใ€ใ€‚']
  1. bracket expression
sentence = "็งใฏ็Œซใ ใ€‚ๅๅ‰ใชใ‚“ใฆใ‚‚ใฎใฏใชใ„ใ€‚ใ ใŒ๏ผŒใ€Žใ‹ใ‚ใ„ใ„ใ€‚ใใ‚Œใงๅๅˆ†ใ ใ‚ใ†ใ€ใ€‚"

tokenizer = SentenceTokenizer(
    patterns=SentenceTokenizer.PATTERNS + [re.compile(r"ใ€Ž.*?ใ€")],
)
print(tokenizer.tokenize(sentence))
# => ['็งใฏ็Œซใ ใ€‚', 'ๅๅ‰ใชใ‚“ใฆใ‚‚ใฎใฏใชใ„ใ€‚', 'ใ ใŒ๏ผŒใ€Žใ‹ใ‚ใ„ใ„ใ€‚ใใ‚Œใงๅๅˆ†ใ ใ‚ใ†ใ€ใ€‚']

Test

python -m pytest

Article

Acknowledgement

Sentencepiece model used in test is provided by @yoheikikuta. Thanks!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

konoha-5.6.0.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

konoha-5.6.0-py3-none-any.whl (18.3 kB view details)

Uploaded Python 3

File details

Details for the file konoha-5.6.0.tar.gz.

File metadata

  • Download URL: konoha-5.6.0.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.6.17

File hashes

Hashes for konoha-5.6.0.tar.gz
Algorithm Hash digest
SHA256 9bed8cfc5d760376438add5e03b216905058500e663d84860821391b8e530ae3
MD5 df68a3692065ac96c585c7aeb8317df7
BLAKE2b-256 4ec98e070d959e1e4b14eaf098af79818c455efdf05ca731c2212e93d9f33452

See more details on using hashes here.

File details

Details for the file konoha-5.6.0-py3-none-any.whl.

File metadata

  • Download URL: konoha-5.6.0-py3-none-any.whl
  • Upload date:
  • Size: 18.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.6.17

File hashes

Hashes for konoha-5.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2462fbdcef4ce91154bd73c000a0202e811d8becc8027df651c126323bd0a902
MD5 8c64d95ffbe5a5214b298e57fd1fa0b8
BLAKE2b-256 bfd08faeea8075f6fdee562130b06d78febbf8552c20dfe0a0928ed1fc002502

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page