Skip to main content

A tiny sentence/word tokenizer for Japanese text written in Python

Project description

๐ŸŒฟ Konoha: Simple wrapper of Japanese Tokenizers

Open In Colab

GitHub stars

Downloads Downloads Downloads

Build Status Documentation Status Python PyPI GitHub Issues GitHub Pull Requests

Konoha is a Python library for providing easy-to-use integrated interface of various Japanese tokenizers, which enables you to switch a tokenizer and boost your pre-processing.

Supported tokenizers

Also, konoha provides rule-based tokenizers (whitespace, character) and a rule-based sentence splitter.

Quick Start with Docker

Simply run followings on your computer:

docker run --rm -p 8000:8000 -t himkt/konoha  # from DockerHub

Or you can build image on your machine:

git clone https://github.com/himkt/konoha  # download konoha
cd konoha && docker-compose up --build  # build and launch container

Tokenization is done by posting a json object to localhost:8000/api/v1/tokenize. You can also batch tokenize by passing texts: ["๏ผ‘ใค็›ฎใฎๅ…ฅๅŠ›", "๏ผ’ใค็›ฎใฎๅ…ฅๅŠ›"] to localhost:8000/api/v1/batch_tokenize.

(API documentation is available on localhost:8000/redoc, you can check it using your web browser)

Send a request using curl on your terminal. Note that a path to an endpoint is changed in v4.6.4. Please check our release note (https://github.com/himkt/konoha/releases/tag/v4.6.4).

$ curl localhost:8000/api/v1/tokenize -X POST -H "Content-Type: application/json" \
    -d '{"tokenizer": "mecab", "text": "ใ“ใ‚Œใฏใƒšใƒณใงใ™"}'

{
  "tokens": [
    [
      {
        "surface": "ใ“ใ‚Œ",
        "part_of_speech": "ๅ่ฉž"
      },
      {
        "surface": "ใฏ",
        "part_of_speech": "ๅŠฉ่ฉž"
      },
      {
        "surface": "ใƒšใƒณ",
        "part_of_speech": "ๅ่ฉž"
      },
      {
        "surface": "ใงใ™",
        "part_of_speech": "ๅŠฉๅ‹•่ฉž"
      }
    ]
  ]
}

Installation

I recommend you to install konoha by pip install 'konoha[all]'.

  • Install konoha with a specific tokenizer: pip install 'konoha[(tokenizer_name)].
  • Install konoha with a specific tokenizer and remote file support: pip install 'konoha[(tokenizer_name),remote]'

If you want to install konoha with a tokenizer, please install konoha with a specific tokenizer (e.g. konoha[mecab], konoha[sudachi], ...etc) or install tokenizers individually.

Example

Word level tokenization

from konoha import WordTokenizer

sentence = '่‡ช็„ถ่จ€่ชžๅ‡ฆ็†ใ‚’ๅ‹‰ๅผทใ—ใฆใ„ใพใ™'

tokenizer = WordTokenizer('MeCab')
print(tokenizer.tokenize(sentence))
# => [่‡ช็„ถ, ่จ€่ชž, ๅ‡ฆ็†, ใ‚’, ๅ‹‰ๅผท, ใ—, ใฆ, ใ„, ใพใ™]

tokenizer = WordTokenizer('Sentencepiece', model_path="data/model.spm")
print(tokenizer.tokenize(sentence))
# => [โ–, ่‡ช็„ถ, ่จ€่ชž, ๅ‡ฆ็†, ใ‚’, ๅ‹‰ๅผท, ใ—, ใฆใ„ใพใ™]

For more detail, please see the example/ directory.

Remote files

Konoha supports dictionary and model on cloud storage (currently supports Amazon S3). It requires installing konoha with the remote option, see Installation.

# download user dictionary from S3
word_tokenizer = WordTokenizer("mecab", user_dictionary_path="s3://abc/xxx.dic")
print(word_tokenizer.tokenize(sentence))

# download system dictionary from S3
word_tokenizer = WordTokenizer("mecab", system_dictionary_path="s3://abc/yyy")
print(word_tokenizer.tokenize(sentence))

# download model file from S3
word_tokenizer = WordTokenizer("sentencepiece", model_path="s3://abc/zzz.model")
print(word_tokenizer.tokenize(sentence))

Sentence level tokenization

from konoha import SentenceTokenizer

sentence = "็งใฏ็Œซใ ใ€‚ๅๅ‰ใชใ‚“ใฆใ‚‚ใฎใฏใชใ„ใ€‚ใ ใŒ๏ผŒใ€Œใ‹ใ‚ใ„ใ„ใ€‚ใใ‚Œใงๅๅˆ†ใ ใ‚ใ†ใ€ใ€‚"

tokenizer = SentenceTokenizer()
print(tokenizer.tokenize(sentence))
# => ['็งใฏ็Œซใ ใ€‚', 'ๅๅ‰ใชใ‚“ใฆใ‚‚ใฎใฏใชใ„ใ€‚', 'ใ ใŒ๏ผŒใ€Œใ‹ใ‚ใ„ใ„ใ€‚ใใ‚Œใงๅๅˆ†ใ ใ‚ใ†ใ€ใ€‚']

You can change symbols for a sentence splitter and bracket expression.

  1. sentence splitter
sentence = "็งใฏ็Œซใ ใ€‚ๅๅ‰ใชใ‚“ใฆใ‚‚ใฎใฏใชใ„๏ผŽใ ใŒ๏ผŒใ€Œใ‹ใ‚ใ„ใ„ใ€‚ใใ‚Œใงๅๅˆ†ใ ใ‚ใ†ใ€ใ€‚"

tokenizer = SentenceTokenizer(period="๏ผŽ")
print(tokenizer.tokenize(sentence))
# => ['็งใฏ็Œซใ ใ€‚ๅๅ‰ใชใ‚“ใฆใ‚‚ใฎใฏใชใ„๏ผŽ', 'ใ ใŒ๏ผŒใ€Œใ‹ใ‚ใ„ใ„ใ€‚ใใ‚Œใงๅๅˆ†ใ ใ‚ใ†ใ€ใ€‚']
  1. bracket expression
sentence = "็งใฏ็Œซใ ใ€‚ๅๅ‰ใชใ‚“ใฆใ‚‚ใฎใฏใชใ„ใ€‚ใ ใŒ๏ผŒใ€Žใ‹ใ‚ใ„ใ„ใ€‚ใใ‚Œใงๅๅˆ†ใ ใ‚ใ†ใ€ใ€‚"

tokenizer = SentenceTokenizer(
    patterns=SentenceTokenizer.PATTERNS + [re.compile(r"ใ€Ž.*?ใ€")],
)
print(tokenizer.tokenize(sentence))
# => ['็งใฏ็Œซใ ใ€‚', 'ๅๅ‰ใชใ‚“ใฆใ‚‚ใฎใฏใชใ„ใ€‚', 'ใ ใŒ๏ผŒใ€Žใ‹ใ‚ใ„ใ„ใ€‚ใใ‚Œใงๅๅˆ†ใ ใ‚ใ†ใ€ใ€‚']

Test

python -m pytest

Article

Acknowledgement

Sentencepiece model used in test is provided by @yoheikikuta. Thanks!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

konoha-5.4.0.tar.gz (15.2 kB view details)

Uploaded Source

Built Distribution

konoha-5.4.0-py3-none-any.whl (17.8 kB view details)

Uploaded Python 3

File details

Details for the file konoha-5.4.0.tar.gz.

File metadata

  • Download URL: konoha-5.4.0.tar.gz
  • Upload date:
  • Size: 15.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.10.0 Linux/5.15.0-1023-azure

File hashes

Hashes for konoha-5.4.0.tar.gz
Algorithm Hash digest
SHA256 b29e000c802531165235b26e0a316080fbdd31695997a898c3e20a9c2f7c1a57
MD5 4babab57ca6539800f5b959e6a0793d7
BLAKE2b-256 f3f1a83f55d8e7e824d483bccce3902335d130b572b5a17bde8b282acd13d504

See more details on using hashes here.

File details

Details for the file konoha-5.4.0-py3-none-any.whl.

File metadata

  • Download URL: konoha-5.4.0-py3-none-any.whl
  • Upload date:
  • Size: 17.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.10.0 Linux/5.15.0-1023-azure

File hashes

Hashes for konoha-5.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2a25c7c38415a31cf95c9a857d0994fab0f2449003154fb3c9d4786ce18de242
MD5 ad5791b088f8911097f5f6959480150f
BLAKE2b-256 fa7c4b6db3c11c0bebcc483c7e9056489e978e5a2bee06091ced3f7b3e79b0e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page