Keras-hyperopt (kopt); Hyper-parameter tuning for Keras using hyperopt.
Project description
# kopt - Hyper-parameter optimization for Keras
[![Build Status](https://travis-ci.org/Avsecz/keras-hyperopt.svg?branch=master)](https://travis-ci.org/avsecz/keras-hyperopt)
[![license](https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000)](https://github.com/avsecz/keras-hyperopt/blob/master/LICENSE)
kopt is a hyper-parameter optimization library for Keras. It is based on [hyperopt](https://github.com/hyperopt/hyperopt).
## Getting started
Here is an example of hyper-parameter optimization for the Keras IMDB
example model.
```python
from keras.datasets import imdb
from keras.preprocessing import sequence
from keras.models import Sequential
import keras.layers as kl
from keras.optimizers import Adam
# kopt and hyoperot imports
from kopt import CompileFN, KMongoTrials, test_fn
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
# 1. define the data function returning training, (validation, test) data
def data(max_features=5000, maxlen=80):
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
return (x_train[:100], y_train[:100], max_features), (x_test, y_test)
# 2. Define the model function returning a compiled Keras model
def model(train_data, lr=0.001,
embedding_dims=128, rnn_units=64,
dropout=0.2):
# extract data dimensions
max_features = train_data[2]
model = Sequential()
model.add(kl.Embedding(max_features, embedding_dims))
model.add(kl.LSTM(rnn_units, dropout=dropout, recurrent_dropout=dropout))
model.add(kl.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=Adam(lr=lr),
metrics=['accuracy'])
return model
# Specify the optimization metrics
db_name="imdb"
exp_name="myexp1"
objective = CompileFN(db_name, exp_name,
data_fn=data,
model_fn=model,
loss_metric="acc", # which metric to optimize for
loss_metric_mode="max", # try to maximize the metric
valid_split=.2, # use 20% of the training data for the validation set
save_model='best', # checkpoint the best model
save_results=True, # save the results as .json (in addition to mongoDB)
save_dir="./saved_models/") # place to store the models
# define the hyper-parameter ranges
# see https://github.com/hyperopt/hyperopt/wiki/FMin for more info
hyper_params = {
"data": {
"max_features": 100,
"maxlen": 80,
},
"model": {
"lr": hp.loguniform("m_lr", np.log(1e-4), np.log(1e-2)), # 0.0001 - 0.01
"embedding_dims": hp.choice("m_emb", (64, 128)),
"rnn_units": 64,
"dropout": hp.uniform("m_do", 0, 0.5),
},
"fit": {
"epochs": 20
}
}
# test model training, on a small subset for one epoch
test_fn(objective, hyper_params)
# run hyper-parameter optimization sequentially (without any database)
trials = Trials()
best = fmin(objective, hyper_params, trials=trials, algo=tpe.suggest, max_evals=2)
# run hyper-parameter optimization in parallel (saving the results to MonogoDB)
# Follow the hyperopt guide:
# https://github.com/hyperopt/hyperopt/wiki/Parallelizing-Evaluations-During-Search-via-MongoDB
# KMongoTrials extends hyperopt.MongoTrials with convenience methods
trials = KMongoTrials(db_name, exp_name,
ip="localhost",
port=22334)
best = fmin(objective, hyper_params, trials=trials, algo=tpe.suggest, max_evals=2)
```
## See also
- [nbs/imdb_example.ipynb](nbs/imdb_example.ipynb)
The documentation of `concise.hyopt` (`kopt` was ported from `concise.hyopt`):
- [Tutorial](https://i12g-gagneurweb.in.tum.de/public/docs/concise/tutorials/hyper-parameter_optimization/)
- [API documentation](https://i12g-gagneurweb.in.tum.de/public/docs/concise/hyopt/)
- [Jupyter notebook](https://github.com/gagneurlab/concise/blob/master/nbs/hyper-parameter_optimization.ipynb)
[![Build Status](https://travis-ci.org/Avsecz/keras-hyperopt.svg?branch=master)](https://travis-ci.org/avsecz/keras-hyperopt)
[![license](https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000)](https://github.com/avsecz/keras-hyperopt/blob/master/LICENSE)
kopt is a hyper-parameter optimization library for Keras. It is based on [hyperopt](https://github.com/hyperopt/hyperopt).
## Getting started
Here is an example of hyper-parameter optimization for the Keras IMDB
example model.
```python
from keras.datasets import imdb
from keras.preprocessing import sequence
from keras.models import Sequential
import keras.layers as kl
from keras.optimizers import Adam
# kopt and hyoperot imports
from kopt import CompileFN, KMongoTrials, test_fn
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
# 1. define the data function returning training, (validation, test) data
def data(max_features=5000, maxlen=80):
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
return (x_train[:100], y_train[:100], max_features), (x_test, y_test)
# 2. Define the model function returning a compiled Keras model
def model(train_data, lr=0.001,
embedding_dims=128, rnn_units=64,
dropout=0.2):
# extract data dimensions
max_features = train_data[2]
model = Sequential()
model.add(kl.Embedding(max_features, embedding_dims))
model.add(kl.LSTM(rnn_units, dropout=dropout, recurrent_dropout=dropout))
model.add(kl.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=Adam(lr=lr),
metrics=['accuracy'])
return model
# Specify the optimization metrics
db_name="imdb"
exp_name="myexp1"
objective = CompileFN(db_name, exp_name,
data_fn=data,
model_fn=model,
loss_metric="acc", # which metric to optimize for
loss_metric_mode="max", # try to maximize the metric
valid_split=.2, # use 20% of the training data for the validation set
save_model='best', # checkpoint the best model
save_results=True, # save the results as .json (in addition to mongoDB)
save_dir="./saved_models/") # place to store the models
# define the hyper-parameter ranges
# see https://github.com/hyperopt/hyperopt/wiki/FMin for more info
hyper_params = {
"data": {
"max_features": 100,
"maxlen": 80,
},
"model": {
"lr": hp.loguniform("m_lr", np.log(1e-4), np.log(1e-2)), # 0.0001 - 0.01
"embedding_dims": hp.choice("m_emb", (64, 128)),
"rnn_units": 64,
"dropout": hp.uniform("m_do", 0, 0.5),
},
"fit": {
"epochs": 20
}
}
# test model training, on a small subset for one epoch
test_fn(objective, hyper_params)
# run hyper-parameter optimization sequentially (without any database)
trials = Trials()
best = fmin(objective, hyper_params, trials=trials, algo=tpe.suggest, max_evals=2)
# run hyper-parameter optimization in parallel (saving the results to MonogoDB)
# Follow the hyperopt guide:
# https://github.com/hyperopt/hyperopt/wiki/Parallelizing-Evaluations-During-Search-via-MongoDB
# KMongoTrials extends hyperopt.MongoTrials with convenience methods
trials = KMongoTrials(db_name, exp_name,
ip="localhost",
port=22334)
best = fmin(objective, hyper_params, trials=trials, algo=tpe.suggest, max_evals=2)
```
## See also
- [nbs/imdb_example.ipynb](nbs/imdb_example.ipynb)
The documentation of `concise.hyopt` (`kopt` was ported from `concise.hyopt`):
- [Tutorial](https://i12g-gagneurweb.in.tum.de/public/docs/concise/tutorials/hyper-parameter_optimization/)
- [API documentation](https://i12g-gagneurweb.in.tum.de/public/docs/concise/hyopt/)
- [Jupyter notebook](https://github.com/gagneurlab/concise/blob/master/nbs/hyper-parameter_optimization.ipynb)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
kopt-0.1.0.tar.gz
(18.5 kB
view details)
File details
Details for the file kopt-0.1.0.tar.gz
.
File metadata
- Download URL: kopt-0.1.0.tar.gz
- Upload date:
- Size: 18.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d90fe5f63dbf89dff514d0903c5cc933c5147e7bb7b109c2ad1d57b6505c7e85 |
|
MD5 | 18b48e691e7fe5d40fde2210a427539f |
|
BLAKE2b-256 | a7e2650da402870396bcf6660e98e55499f6ec7d05c8443f3bfb2c0e64dda172 |