Skip to main content

Low level implementations for computer vision in Rust

Project description

kornia-rs: low level computer vision library in Rust

Crates.io Version PyPI version Documentation License Slack

The kornia-rs crate is a low level library for Computer Vision written in Rust 🦀

Use the library to perform image I/O, visualisation and other low level operations in your machine learning and data-science projects in a thread-safe and efficient way.

Getting Started

cargo run --bin hello_world -- --image-path path/to/image.jpg

use kornia::image::Image;
use kornia::io::functional as F;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // read the image
    let image: Image<u8, 3> = F::read_image_any("tests/data/dog.jpeg")?;

    println!("Hello, world! 🦀");
    println!("Loaded Image size: {:?}", image.size());
    println!("\nGoodbyte!");

    Ok(())
}
Hello, world! 🦀
Loaded Image size: ImageSize { width: 258, height: 195 }

Goodbyte!

Features

  • 🦀The library is primarly written in Rust.
  • 🚀 Multi-threaded and efficient image I/O, image processing and advanced computer vision operators.
  • 🔢 The n-dimensional backend is based on the ndarray crate.
  • 🐍 Python bindings are created with PyO3/Maturin.
  • 📦 We package with support for Linux [amd64/arm64], Macos and WIndows.
  • Supported Python versions are 3.7/3.8/3.9/3.10/3.11

Supported image formats

  • Read images from AVIF, BMP, DDS, Farbeld, GIF, HDR, ICO, JPEG (libjpeg-turbo), OpenEXR, PNG, PNM, TGA, TIFF, WebP.

Image processing

  • Convert images to grayscale, resize, crop, rotate, flip, pad, normalize, denormalize, and other image processing operations.

Video processing

  • Capture video frames from a camera.

🛠️ Installation

>_ System dependencies

Dependeing on the features you want to use, you might need to install the following dependencies in your system:

turbojpeg

sudo apt-get install nasm

gstreamer

sudo apt-get install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev

** Check the gstreamr installation guide: https://docs.rs/gstreamer/latest/gstreamer/#installation

🦀 Rust

Add the following to your Cargo.toml:

[dependencies]
kornia = { git = "https://github.com/kornia/kornia-rs", tag = "v0.1.6-rc1" }

Alternatively, you can use each sub-crate separately:

[dependencies]
kornia-core = { git = "https://github.com/kornia/kornia-rs", tag = "v0.1.6-rc1" }
kornia-io = { git = "https://github.com/kornia/kornia-rs", tag = "v0.1.6-rc1" }
kornia-image = { git = "https://github.com/kornia/kornia-rs", tag = "v0.1.6-rc1" }
kornia-imgproc = { git = "https://github.com/kornia/kornia-rs", tag = "v0.1.6-rc1" }

🐍 Python

pip install kornia-rs

Examples: Image processing

The following example shows how to read an image, convert it to grayscale and resize it. The image is then logged to a rerun recording stream.

Checkout all the examples in the examples directory to see more use cases.

use kornia::{image::{Image, ImageSize}, imgproc};
use kornia::io::functional as F;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // read the image
    let image: Image<u8, 3> = F::read_image_any("tests/data/dog.jpeg")?;
    let image_viz = image.clone();

    let image_f32: Image<f32, 3> = image.cast_and_scale::<f32>(1.0 / 255.0)?;

    // convert the image to grayscale
    let mut gray = Image::<f32, 1>::from_size_val(image_f32.size(), 0.0)?;
    imgproc::color::gray_from_rgb(&image_f32, &mut gray)?;

    // resize the image
    let new_size = ImageSize {
        width: 128,
        height: 128,
    };

    let mut gray_resized = Image::<f32, 1>::from_size_val(new_size, 0.0)?;
    imgproc::resize::resize_native(
        &gray, &mut gray_resized,
        imgproc::resize::InterpolationMode::Bilinear,
    )?;

    println!("gray_resize: {:?}", gray_resized.size());

    // create a Rerun recording stream
    let rec = rerun::RecordingStreamBuilder::new("Kornia App").connect()?;

    // log the images
    let _ = rec.log("image", &rerun::Image::try_from(image_viz.data)?);
    let _ = rec.log("gray", &rerun::Image::try_from(gray.data)?);
    let _ = rec.log("gray_resize", &rerun::Image::try_from(gray_resized.data)?);

    Ok(())
}

Screenshot from 2024-03-09 14-31-41

Python usage

Load an image, that is converted directly to a numpy array to ease the integration with other libraries.

    import kornia_rs as K
    import numpy as np

    # load an image with using libjpeg-turbo
    img: np.ndarray = K.read_image_jpeg("dog.jpeg")

    # alternatively, load other formats
    # img: np.ndarray = K.read_image_any("dog.png")

    assert img.shape == (195, 258, 3)

    # convert to dlpack to import to torch
    img_t = torch.from_dlpack(img)
    assert img_t.shape == (195, 258, 3)

Write an image to disk

    import kornia_rs as K
    import numpy as np

    # load an image with using libjpeg-turbo
    img: np.ndarray = K.read_image_jpeg("dog.jpeg")

    # write the image to disk
    K.write_image_jpeg("dog_copy.jpeg", img)

Encode or decode image streams using the turbojpeg backend

import kornia_rs as K

# load image with kornia-rs
img = K.read_image_jpeg("dog.jpeg")

# encode the image with jpeg
image_encoder = K.ImageEncoder()
image_encoder.set_quality(95)  # set the encoding quality

# get the encoded stream
img_encoded: list[int] = image_encoder.encode(img)

# decode back the image
image_decoder = K.ImageDecoder()

decoded_img: np.ndarray = image_decoder.decode(bytes(image_encoded))

Resize an image using the kornia-rs backend with SIMD acceleration

import kornia_rs as K

# load image with kornia-rs
img = K.read_image_jpeg("dog.jpeg")

# resize the image
resized_img = K.resize(img, (128, 128), interpolation="bilinear")

assert resized_img.shape == (128, 128, 3)

🧑‍💻 Development

Pre-requisites: install rust and python3 in your system.

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Clone the repository in your local directory

git clone https://github.com/kornia/kornia-rs.git

🦀 Rust

Compile the project and run the tests

cargo test

For specific tests, you can run the following command:

cargo test image

🐍 Python

To build the Python wheels, we use the maturin package. Use the following command to build the wheels:

make build-python

To run the tests, use the following command:

make test-python

💜 Contributing

This is a child project of Kornia. Join the community to get in touch with us, or just sponsor the project: https://opencollective.com/kornia

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kornia_rs-0.1.7.tar.gz (71.2 kB view details)

Uploaded Source

Built Distributions

kornia_rs-0.1.7-cp312-none-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

kornia_rs-0.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.7-cp312-cp312-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

kornia_rs-0.1.7-cp312-cp312-macosx_10_12_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

kornia_rs-0.1.7-cp311-none-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

kornia_rs-0.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.7-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

kornia_rs-0.1.7-cp311-cp311-macosx_10_12_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

kornia_rs-0.1.7-cp310-none-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

kornia_rs-0.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.7-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

kornia_rs-0.1.7-cp310-cp310-macosx_10_12_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

kornia_rs-0.1.7-cp39-none-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

kornia_rs-0.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.7-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

kornia_rs-0.1.7-cp39-cp39-macosx_10_12_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

kornia_rs-0.1.7-cp38-none-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

kornia_rs-0.1.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.7-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

kornia_rs-0.1.7-cp38-cp38-macosx_10_12_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

kornia_rs-0.1.7-cp37-none-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.7 Windows x86-64

kornia_rs-0.1.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

kornia_rs-0.1.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

kornia_rs-0.1.7-cp37-cp37m-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

kornia_rs-0.1.7-cp37-cp37m-macosx_10_12_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

File details

Details for the file kornia_rs-0.1.7.tar.gz.

File metadata

  • Download URL: kornia_rs-0.1.7.tar.gz
  • Upload date:
  • Size: 71.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for kornia_rs-0.1.7.tar.gz
Algorithm Hash digest
SHA256 601aeacd17826d3a796e847d558d9e32c08aa686653eb21b2f93031438af93a1
MD5 ccbc11a7a4de10a9f0173a61eacd1e6c
BLAKE2b-256 07f3c526610210887108c43a0bb1560964176001a25fc72eba7d084394ef5c7a

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 3fb9aeebf1676b2f2be442905b2112510aea8333e8949ceaaf348a4094887727
MD5 ff75455be82b7eead071763148b2f2bc
BLAKE2b-256 0e496882d3014271d7905263249b36e27c566a6ed0f3234deca75f04407363f2

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80d09d41c0bc31f308d27ae49f0c647f036c9cc205caee3bbc8e5bd0bbb30912
MD5 9d61a950fa3910eb340f3eaadb20d8b7
BLAKE2b-256 df366079761c72771c5b720b12bf86832dc0cff4cb04748f81c24f71124e2507

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3fccf8d4bb1b28ff7f9c252006379d1426317afc215f03dfec99b3fe5ce7773d
MD5 b4db2e2788b96cbc8fa0f05c9e76b9d5
BLAKE2b-256 9ee7a8db14d77adc3b8e8011675e69f7460a0299561d377e3dde542d3c418b87

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 29f4b18989d08bc96af393997890a8578a619696f842811879fa1172b267efd1
MD5 eac1398df386ff129193d9f0025edd84
BLAKE2b-256 2cdcbd4a7ca35b6202c24d0393a100e951d4be106774a60c1f7b61d274ff3904

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 fffb88d9a37251e0e2ca4fbe09589e66da4b4929e9dee428b73302a9d2d6c820
MD5 9bd55678e9540920cc69cc4d34774d3c
BLAKE2b-256 2048b8e507a03610ce52c07ebda95f0937d65468ea1db608ad7d1a6ec1190cd4

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 4f90e5c1f7dfa422889c2af8a570e774604352fc1596f77a00992c1195528c59
MD5 61d15046e3ac56530eb6c11f1f15bab3
BLAKE2b-256 f37b1f5d35a77a9bfd3566954ceb2e1b38c7673628a2d6a96a8568558454fb27

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d7ba0dd9c680c28444eed2cf7611faccf3f85eeb9bfa600df53d62d14deefba
MD5 b98f0c1f7c4cfe6b72883846c37c4ccd
BLAKE2b-256 66047de2357432d3281d7784db220b42063f28ac2f0821072a9a18ee655f1576

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c44e9b36f47bccbaeae99f37d312a3aa75da1c0f0fafb1a581a5a0981e94f8a
MD5 053ba7e521d96cb891cc17f003c41f83
BLAKE2b-256 efe231a0b8b925a561a2beb14e4472ed359b9670fda21f2eb44798f0fc435522

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b67f07d435d55a4f32051bc65a324b51f43252bf6f7f3405695d1015819c9d30
MD5 2c3a4d0112ef01f328b11b5e16c2588b
BLAKE2b-256 a3c7ba101a4d9b534e61970b33ccdf895b91af14914c89438cd3e1d439680bcb

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 fd3506c8e61fb7f55a289fb34998804b0cd35be1e8f2374ee5eb9081b026c472
MD5 9772ae9435c75cc52941be1d7cea1774
BLAKE2b-256 3ad1104e9f575c27679ffedf994e53e6ac39067a0e77b2ea0d1567d4738686ed

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 c409b9c9612d7025847b4e8d93f43a235cee69a2a990481d072cb90cec94badd
MD5 8cd210cfe7de2331370ef35916df8663
BLAKE2b-256 954a1bc1d0fae0a8a9e3ba82cfae375760003f6786edac12cab2654f487682f8

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4641703b3498e84c47ceadf1ecc9c8f05bcb9b9aa9e8f0d48e3dc4aa2e2946a
MD5 9a5a6d0a8385e6bf0ad3ca66f39e8b30
BLAKE2b-256 3917960320728ada483600330bd8f50dc576cef05c06acab96e8373fe4d70ad3

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a57a2c8484fecae5a9dbe1e3ad8e5b507b7f643549441d6309f404f45f27aa8b
MD5 92c3598869a6f1af68b6e57a736157c8
BLAKE2b-256 446288e056a7090cfbe461c9537f134c87de7f1018e7ca2ba6736f2366b2ea32

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6c67c7c13a380fb6f8a16d03e9e4311550f789196051197217f910af8e21158d
MD5 c69a21626ca0fb49ac4f03a4830b43ed
BLAKE2b-256 6e244558f651560f04ce4a234911b8bbc3493706c13e76c6f844381af5c8621f

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 fe407d6bb9e830e872b7e582b7035aa56092ad8a9b7881f6826706fdb63058bc
MD5 6ab174583f27b3c9eac0b1182cbc37a7
BLAKE2b-256 90450ad5bdf0ded42ff96767d236b004deae81ee53c0a503ee4d4d65963bc864

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 74d9018f1674fdf975941a924c4cad402a1e035578adb09ad56bbfb219a37a33
MD5 34be7b96e20c35125032f06a6bf422f2
BLAKE2b-256 ffbc997a4eefd5101d0d86e66a7a7d968a5115b503c3977fa2f40bbac36474d9

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33170fa6c60d9d0e544211b1a8b802559971561449e010e50cf1e4564ec0182c
MD5 b2b27dbeccb0d003845e478fba8d3759
BLAKE2b-256 3467c2a6ab65d6ed1870896527bd64a7dccbcf1ab465899cf37aece73d9574db

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c3b68c2bd10f2a3ad3eb75b993ef56f492e0b347b73f21a022dbf027fa88d0a5
MD5 e87ba480928c1549ba03b89d5f7a8fd2
BLAKE2b-256 ddf3a785452ec05cc4de4ef38335f6776630b8565ac4e307571df18d5685c07a

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 473d5197fa356a3230c4126867cfce8c433f9af20fec11734aace30fd8c3bc92
MD5 9d70a6ee82e4286821fa2ab3e7f13714
BLAKE2b-256 3b7f62927fb553513fc07bf6ced8ba8bd61400cb6d4a64bc114628656003920e

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 4f45a6a0323655e781d513d197def2a0001b526e6191a34f6e2d99ef193a6654
MD5 87a6fc0444c0db0679d84cbc811844a4
BLAKE2b-256 9991b6c1d731ba6387042a7452b65cae89a0ff176fb1c4014d37726c786c6209

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 872fdb89d55f80cd3a39034669b162b801fba83be93b25683d4fc48249dd2277
MD5 71798d9d14b137a0fc9a0c8ac2083c1e
BLAKE2b-256 d58a1c633a07cc7be448e601e12501c7004890f2af6abc8a549f84604865a3ba

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df9b0348f31e7bb5960615cb645a11036f8e0dcddc169b87ff28bad3149bdbbd
MD5 942589655b55d85de748e41adba28c82
BLAKE2b-256 395e2a104b205789b7ecaec8a4681d63e079326ce2f7b12e3792e37a392171aa

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0fb7b6ab2e48365bc09814d2d86e8205fab9484abf607894b96237bdd6408990
MD5 c38296d0d0929c43a6e335239d67f424
BLAKE2b-256 10a77791714390301c289449740758f400f610e61af94be7f6dadc20cd24062a

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7de372e194fc43efd12d928e75d6d52e1f18590a944c073d19444658a6060aae
MD5 cda84cd0c3da58f38025805d56e66935
BLAKE2b-256 b4d57603ebe844e1642bf325b3cf25ab0663cb2b2adea53e1a534c092909c84a

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d9c10ffcc151e1a99075b95fdf09adeab8d7f2212e93ee9aef44fe4489505a9a
MD5 e3ab83376a808599b9b16dcc29c1a4f2
BLAKE2b-256 0f3253680430bd09e3e143f6a452845323b11cdb8d164f5c51532486c27974d3

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 aeab05a54d691f7978b6cd99e3d0cad3619c8316196ddc9e2aff72947ce51577
MD5 90c6567f159e569f02ee89c2ccb57935
BLAKE2b-256 f5ae6fb9b386925b2579a5dc0f5846493b33e9a6917f8c4664d02e33aeb327b2

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e72aea6b688b5a9ad42d0ca703c1f0fb6423a66771d2e8670df765ac38cfe85
MD5 bcd798b7a51a23032c6bd5d9e4028661
BLAKE2b-256 f00440e959dfb76999ff37bc18d38294383260de21093bd88f1f09c068e7a147

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b73f48e21f2a3ab533065d6d4600e53ec20096de4ad739dfa0edbad8b9adf499
MD5 b8a2ece015dca780eda65cb35cf413ef
BLAKE2b-256 43888ab3b7ad1836385c3fc2c5504a91c492c95f61ff294ca729dee71d01a10d

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df495f9aa4ea01e3126f5d07d73685f410f320e2c9aff52e215f597d8714c0c1
MD5 f3a13afb99e63cdc2c89951c6c245f69
BLAKE2b-256 f4194d889949731d3b604fa6cf125888c346ac696d423fabf5433c1cdce0bd0c

See more details on using hashes here.

File details

Details for the file kornia_rs-0.1.7-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for kornia_rs-0.1.7-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e9bf3a264683b730aa90aeb138fa29c0905c220be36d32869eaf1e3227e25075
MD5 8addc7591202ef3e31495795ffc39cb3
BLAKE2b-256 4671a0e7ab0f211027986314cfee01891ddc85c42da8859c4e4d6e14d88aa563

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page