Skip to main content

Functions for working with this data repository: https://figshare.com/articles/BirdsongRecognition/3470165

Project description

Build Status DOI PyPI version License

koumura

Functions for working with data from the following repository: https://figshare.com/articles/BirdsongRecognition/3470165

The repository contains .wav files of Bengalese finch song from ten birds and annotation for the songs in .xml files.

This repository provides a great resource, and was used to benchmark a sliding window-based neural network for segmenting and labeling the elements of birdsong, as described in the following paper:
Koumura, Takuya, and Kazuo Okanoya.
"Automatic recognition of element classes and boundaries in the birdsong with variable sequences."
PloS one 11.7 (2016): e0159188.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159188

The code for the network can be found here:
https://github.com/takuya-koumura/birdsong-recognition

The original code was released under the GNU license:
https://github.com/takuya-koumura/birdsong-recognition/blob/master/LICENSE

The koumura module is used with the crowsetta package to make the repository a dataset available in the hybrid-vocal-classifier and vak libraries.

It's called koumura because that's the last name of the first author on the paper, and because I am too lazy to type PyBirdsongRecognition.

Installation

$ pip install koumura

Usage

The main thing that koumura gives you is easy access to the annotation, without having to deal with the .xml file format.

To access the annotation in the Annotation.xml files for each bird, use the parse_xml function.

>>> from koumura import parse_xml
>>> seq_list = parse_xml(xml_file='./Bird0/Annotation.xml', concat_seqs_into_songs=False)
>>> seq_list[0]
Sequence from 0.wav with position 32000 and length 43168
>>> seq_list[0].syls[:3]
[Syllable labeled 0 at position 2240 with length 2688, Syllable labeled 0 at position 8256 with length 2784, Syllable labeled 0 at position 14944 with length 2816]  

Notice that this package preserves the abstraction of the original code, where syllables and sequences of syllables are represented as objects. This can be helpful if you are trying to replicate functionality from that code.
Importantly, each song is broken up into a number of "sequences". You can set the flag concat_seqs_into_songs to True if you want parse_xml to concatenate sequences by song (.wav file), so that each Sequence is actually all the sequences from one song.
If you are using the annotation to work with the dataset for some other purpose, you may find it more convenient to work with some other format. For that, please check out the crowsetta tool, that helps with building datasets of annotated vocalizations in a way that's annotation-format agnostic.

The koumura package also provides a convenience function to load the annotation for an individual song, load_song_annot. This is basically a wrapper around parse_xml that filters out the songs you don't want.

>>> from koumura import load_song_annot
>>> wav1 = load_song_annot(wav_file='1.wav')
>>> print(wav1)                                                                                                  
Sequence from 1.wav with position 32000 and length 214176  

Getting Help

Please feel free to raise an issue here:
https://github.com/NickleDave/koumura/issues

License

BSD License.

Citation

If you use this package, please cite the DOI: DOI

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

koumura-0.2.1.post1.tar.gz (11.0 kB view details)

Uploaded Source

Built Distribution

koumura-0.2.1.post1-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file koumura-0.2.1.post1.tar.gz.

File metadata

  • Download URL: koumura-0.2.1.post1.tar.gz
  • Upload date:
  • Size: 11.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.6.13 Linux/5.4.0-7634-generic

File hashes

Hashes for koumura-0.2.1.post1.tar.gz
Algorithm Hash digest
SHA256 742e8b9056cb5c99cef27ff5e44463c980450f866eedf8bac0b64a4271522cab
MD5 72d979d77d48fa5cbc08d8d5ad62f69e
BLAKE2b-256 a46bf324f58eba54d7e605cfe77c3222b890c52300e0b9d192ea6d11a372ecb2

See more details on using hashes here.

File details

Details for the file koumura-0.2.1.post1-py3-none-any.whl.

File metadata

  • Download URL: koumura-0.2.1.post1-py3-none-any.whl
  • Upload date:
  • Size: 10.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.6.13 Linux/5.4.0-7634-generic

File hashes

Hashes for koumura-0.2.1.post1-py3-none-any.whl
Algorithm Hash digest
SHA256 5e0cc4642c32b43f98b8f7d2f65992ce959ee977d35f1515d6f633f991fe427b
MD5 7fc086d81f8efc90a3288336e6704925
BLAKE2b-256 3bbf055f125d21dd5e7fd8252ffa4b9811356f8d9dfcd05d6e85f097833838e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page