Skip to main content

A package for k-Representatives and LSH-k-Representatives

Project description

Python implementations of the k-Representatives and LSH-k-Representatives algorithms for clustering categorical data:

Different from k-Modes algorithm, k-Representatives and LSH-k-Representatives define the "representatives" that keep the frequencies of all categorical values of the clusters.

Installation:

Using pip:

pip install krepresentatives

Import the packages:

import numpy as np
from krepresentatives.kRepresentatives import kRepresentatives

Generate a simple categorical dataset:

X = np.array([[0,0],[0,1],[0,0],[1,1],[2,2],[2,3],[2,3]])
y = np.array([0,0,0,0,1,1,1])

k-Representatives:

kreps = kRepresentatives(X,y,n_init=5,n_clusters=2 ,verbose=3)
kreps.fit_predict()

Built-in evaluattion metrics:

kreps.CalcScore()

Out come:

kRepresentatives Init 0
Iter 0  Cost: 8.00  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 1  Cost: 4.83  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 2  Cost: 4.83  Move: 0  Num empty: 0  Timelapse: 0.00
kRepresentatives Init 1
Iter 0  Cost: 9.48  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 1  Cost: 6.50  Move: 1  Num empty: 0  Timelapse: 0.00
Iter 2  Cost: 5.33  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 3  Cost: 5.33  Move: 0  Num empty: 0  Timelapse: 0.00
kRepresentatives Init 2
Iter 0  Cost: 9.08  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 1  Cost: 7.60  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 2  Cost: 7.60  Move: 0  Num empty: 0  Timelapse: 0.00
kRepresentatives Init 3
Iter 0  Cost: 9.31  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 1  Cost: 6.50  Move: 1  Num empty: 0  Timelapse: 0.00
Iter 2  Cost: 5.33  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 3  Cost: 5.33  Move: 0  Num empty: 0  Timelapse: 0.00
kRepresentatives Init 4
Iter 0  Cost: 9.42  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 1  Cost: 7.60  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 2  Cost: 7.60  Move: 0  Num empty: 0  Timelapse: 0.00
Score:  4.833333333333334  Time: 0.0015569399999999956
Purity: 1.00 NMI: 1.00 ARI: 1.00 Sil:  0.52 Acc: 1.00 Recall: 1.00 Precision: 1.00

Parameters:

X: Categorical dataset
y: Labels of object (for evaluation only)
n_init: Number of initializations
n_clusters: Number of target clusters
max_iter: Maximum iterations
verbose:
random_state:

Outputs:

cluster_representatives: List of final representatives
labels_: Prediction labels
cost_: Final sum of squared distance from objects to their centroids
n_iter_: Number of iterations
epoch_costs_: Average time for an initialization

LSH-k-Representatives: To be updated

References:

[1] San, Ohn Mar, Van-Nam Huynh, and Yoshiteru Nakamori. "An alternative extension of the k-means algorithm for clustering categorical data." International journal of applied mathematics and computer science 14 (2004): 241-247. [2] To be updated

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

krepresentatives-1.1.2.tar.gz (7.6 kB view details)

Uploaded Source

File details

Details for the file krepresentatives-1.1.2.tar.gz.

File metadata

  • Download URL: krepresentatives-1.1.2.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for krepresentatives-1.1.2.tar.gz
Algorithm Hash digest
SHA256 38e0c22625e19a28eab6fe807cd51e55ebe879507620793ef2a2195e999ed1ea
MD5 550da4ef6dfcd991546849e2de34455b
BLAKE2b-256 c3d3b361129ad65ed004651aa2e639deabe6a37fc6b464705b24863cad892f98

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page