Skip to main content

A package for k-Representatives and LSH-k-Representatives

Project description

Python implementations of the k-Representatives and LSH-k-Representatives algorithms for clustering categorical data:

Different from k-Modes algorithm, k-Representatives and LSH-k-Representatives define the "representatives" that keep the frequencies of all categorical values of the clusters.

Installation:

Using pip:

pip install krepresentatives

Import the packages:

import numpy as np
from krepresentatives.kRepresentatives import kRepresentatives

Generate a simple categorical dataset:

X = np.array([[0,0],[0,1],[0,0],[1,1],[2,2],[2,3],[2,3]])
y = np.array([0,0,0,0,1,1,1])

k-Representatives:

kreps = kRepresentatives(X,y,n_init=5,n_clusters=2 ,verbose=3)
kreps.fit_predict()

Built-in evaluattion metrics:

kreps.CalcScore()

Out come:

kRepresentatives Init 0
Iter 0  Cost: 8.00  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 1  Cost: 4.83  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 2  Cost: 4.83  Move: 0  Num empty: 0  Timelapse: 0.00
kRepresentatives Init 1
Iter 0  Cost: 9.48  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 1  Cost: 6.50  Move: 1  Num empty: 0  Timelapse: 0.00
Iter 2  Cost: 5.33  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 3  Cost: 5.33  Move: 0  Num empty: 0  Timelapse: 0.00
kRepresentatives Init 2
Iter 0  Cost: 9.08  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 1  Cost: 7.60  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 2  Cost: 7.60  Move: 0  Num empty: 0  Timelapse: 0.00
kRepresentatives Init 3
Iter 0  Cost: 9.31  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 1  Cost: 6.50  Move: 1  Num empty: 0  Timelapse: 0.00
Iter 2  Cost: 5.33  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 3  Cost: 5.33  Move: 0  Num empty: 0  Timelapse: 0.00
kRepresentatives Init 4
Iter 0  Cost: 9.42  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 1  Cost: 7.60  Move: 0  Num empty: 0  Timelapse: 0.00
Iter 2  Cost: 7.60  Move: 0  Num empty: 0  Timelapse: 0.00
Score:  4.833333333333334  Time: 0.0015569399999999956
Purity: 1.00 NMI: 1.00 ARI: 1.00 Sil:  0.52 Acc: 1.00 Recall: 1.00 Precision: 1.00

Parameters:

X: Categorical dataset
y: Labels of object (for evaluation only)
n_init: Number of initializations
n_clusters: Number of target clusters
max_iter: Maximum iterations
verbose:
random_state:

Outputs:

cluster_representatives: List of final representatives
labels_: Prediction labels
cost_: Final sum of squared distance from objects to their centroids
n_iter_: Number of iterations
epoch_costs_: Average time for an initialization

LSH-k-Representatives: To be updated

References:

[1] San, Ohn Mar, Van-Nam Huynh, and Yoshiteru Nakamori. "An alternative extension of the k-means algorithm for clustering categorical data." International journal of applied mathematics and computer science 14 (2004): 241-247. [2] To be updated

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for krepresentatives, version 1.1.2
Filename, size File type Python version Upload date Hashes
Filename, size krepresentatives-1.1.2.tar.gz (7.6 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page