Skip to main content

Testing and Reporting framework for Time Series Analysis

Project description

Docs Code style: black Tests Discord Community


Logo

KRISI
(/creesee/)

Evaluation and Reporting Framework for Time Series Forecasting
Check Examples ~ Explore the docs »


Krisi is a Scoring library for Time-Series Forecasting. It calculates, stores and vizualises the performance of your predictions!

Krisi is tailored to measure performance over time (metrics over time). It is from the ground-up extensible and lightweight and comes with fundamental metrics for regression, classification and residual diagnostics.

It can generate reports in:

  • static PDF (with plotly)
  • interactive web (HTML) (with plotly)
  • pretty formatted for console (with rich and plotext)
  • each figure displayed or saved as an svg

Output Examples: HTML, Console, PDF

Krisi solves the following problems

  • Missing Rolling window based evaluation.
    → Krisi supports evaluating metrics over time.
  • Most TS libraries attach reporting to modelling (eg.: Darts, Statsmodel).
    → Krisi is independent of any modeling method or library.
  • Extendability is tedious: only works by subclassing objects.
    → Krisi supports easy configuration of custom metrics along with an extensive library of predefined metrics.
  • Too many dependencies.
    → Krisi has few hard dependencies (only core libaries, eg.: sklearn and plotting libraries).
  • Visualisation results are too basic.
    → With Krisi you can decide to share and interactive web, a static PDF, each metric diagram displayed inline or quickly look at the ScoreCard pretty printed to the console.

Installation

The project was entirely built in python.

Prerequisites

  • python >= 3.8 and pip

Then run:

  • pip install krisi

If you'd like to also use interactive plotting (html) and pdf generation then run:

  • pip install krisi "krisi[plotting]"

Quickstart

You can quickly evaluate your predictions by running:

import numpy as np
from krisi.evaluate import score

print(score(y=np.random.rand(100), predictions=np.random.rand(100)))
Outputs:
                                          Model_20230505-15094466243320 <- you can add your name here
                     Mean Absolute Error                       0.115402
          Mean Absolute Percentage Error                       3.272862
Symmetric Mean Absolute Percentage Error                       0.718754
                      Mean Squared Error                       0.020945
                 Root Mean Squared Error                       0.144723
                               R-squared                      -1.108832
                   Mean of the Residuals                      -0.002094
     Standard Deviation of the Residuals                       0.144781

Krisi's main object is the ScoreCard that contains predefined Metrics and which you can add further Metrics to.

import numpy as np
from krisi import score

sc = score(
    y=np.random.random(1000),
    predictions=np.random.random(1000),
).print()
Outputs:
┏━ Result of Model_20230505-130632d68aefea on Dataset_20230505-130632d4167ca4 tested on outofsam━┓
┃                                                                                                ┃
┃                                Targets and Predictions Analysis                                ┃
┃ ╭─────────────────┬────────────────────────────────────────────────┬────────────┬────────────╮ ┃
┃ │     Series Type │ Histogram                                      │      Types │   Indicies │ ┃
┃ ├─────────────────┼────────────────────────────────────────────────┼────────────┼────────────┤ ┃
┃ │         Targets │     ┌────────────────────────────────────────┐ │    NaNs: 0 │   Start: 0 │ ┃
┃ │                 │ 75.0┤                   ██                   │ │     dtype: │   End: 999 │ ┃
┃ │                 │ 50.0┤           ██████████████               │ │    float64 │            │ ┃
┃ │                 │ 25.0┤    ██ █████████████████████████        │ │            │            │ ┃
┃ │                 │  0.0┤███████████████████████████████████ ████│ │            │            │ ┃
┃ │                 │     └┬─────────┬─────────┬────────┬─────────┬┘ │            │            │ ┃
┃ │                 │    -0.30     -0.14     0.02     0.18     0.34  │            │            │ ┃
┃ ├─────────────────┼────────────────────────────────────────────────┼────────────┼────────────┤ ┃
┃ │     Predictions │     ┌────────────────────────────────────────┐ │    NaNs: 0 │   Start: 0 │ ┃
┃ │                 │ 68.0┤                  █ ██                  │ │     dtype: │   End: 999 │ ┃
┃ │                 │ 45.3┤          ███████████████               │ │    float64 │            │ ┃
┃ │                 │ 22.7┤      ███████████████████████           │ │            │            │ ┃
┃ │                 │  0.0┤███████████████████████████████████ █ ██│ │            │            │ ┃
┃ │                 │     └┬─────────┬─────────┬────────┬─────────┬┘ │            │            │ ┃
┃ │                 │    -0.29     -0.13     0.03     0.19     0.34  │            │            │ ┃
┃ ╰─────────────────┴────────────────────────────────────────────────┴────────────┴────────────╯ ┃
┃                                      Residual Diagnostics                                      ┃
┃ ╭─────────────────────┬─────────────────────────────────────────────────┬────────────────────╮ ┃
┃ │         Metric Name │ Result                                          │ Parameters         │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │           Residuals │ 0      0.055378                                 │ {}                 │ ┃
┃ │         (residuals) │ 1     -0.077456                                 │                    │ ┃
┃ │                     │ 2     -0.102910                                 │                    │ ┃
┃ │                     │ 3     -0.088878                                 │                    │ ┃
┃ │                     │ 4     -0.137035                                 │                    │ ┃
┃ │                     │          ...                                    │                    │ ┃
┃ │                     │ 995    0.153345                                 │                    │ ┃
┃ │                     │ 996    0.222105                                 │                    │ ┃
┃ │                     │ 997    0.022042                                 │                    │ ┃
┃ │                     │ 998    0.013997                                 │                    │ ┃
┃ │                     │ 999    0.068374                                 │                    │ ┃
┃ │                     │ Length: 1000, dtype: float64                    │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │           Ljung Box │       lb_stat  lb_pvalue                        │ {}                 │ ┃
┃ │          Statistics │ 1    0.410131   0.521903                        │                    │ ┃
┃ │ (ljung_box_statist… │ 2    0.411774   0.813925                        │                    │ ┃
┃ │                     │ 3    0.541798   0.909617                        │                    │ ┃
┃ │                     │ 4    4.200716   0.379523                        │                    │ ┃
┃ │                     │ 5    4.217347   0.518566                        │                    │ ┃
┃ │                     │ 6    5.934770   0.430537                        │                    │ ┃
┃ │                     │ 7    9.905078   0.194017                        │                    │ ┃
┃ │                     │ 8   10.020619   0.263582                        │                    │ ┃
┃ │                     │ 9   11.102783   0.268729                        │                    │ ┃
┃ │                     │ 10  11.268537   0.336983                        │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │         Mean of the │ -0.002                                          │ {}                 │ ┃
┃ │           Residuals │                                                 │                    │ ┃
┃ │    (residuals_mean) │                                                 │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │  Standard Deviation │ 0.145                                           │ {}                 │ ┃
┃ │    of the Residuals │                                                 │                    │ ┃
┃ │     (residuals_std) │                                                 │                    │ ┃
┃ ╰─────────────────────┴─────────────────────────────────────────────────┴────────────────────╯ ┃
┃                                  Forecast Errors - Regression                                  ┃
┃ ╭─────────────────────┬─────────────────────────────────────────────────┬────────────────────╮ ┃
┃ │ Mean Absolute Error │ 0.117                                           │ {}                 │ ┃
┃ │               (mae) │                                                 │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │       Mean Absolute │ 7.322                                           │ {}                 │ ┃
┃ │    Percentage Error │                                                 │                    │ ┃
┃ │              (mape) │                                                 │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │      Symmetric Mean │ 0.727                                           │ {}                 │ ┃
┃ │ Absolute Percentage │                                                 │                    │ ┃
┃ │       Error (smape) │                                                 │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │  Mean Squared Error │ 0.021                                           │ {'squared': True}  │ ┃
┃ │               (mse) │                                                 │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │   Root Mean Squared │ 0.145                                           │ {'squared': False} │ ┃
┃ │        Error (rmse) │                                                 │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │   Root Mean Squared │ 'Mean Squared Logarithmic Error cannot be used  │ {'squared': False} │ ┃
┃ │   Log Error (rmsle) │ when targets contain negative values.'          │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │   R-squared (r_two) │ -0.982                                          │ {}                 │ ┃
┃ ╰─────────────────────┴─────────────────────────────────────────────────┴────────────────────╯ ┃
┃                                                                                                ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛


Evaluating Metrics over time (on a rolling basis).

import numpy as np
from krisi import score

score(
    y=np.random.rand(10000),
    predictions=np.random.rand(10000),
    calculation="rolling",
).print()
Outputs:
┏━ Result of Model_20230505-1303447c37e983 on Dataset_20230505-130344cea0de16 tested on outofsam━┓
┃                                                                                                ┃
┃                                Targets and Predictions Analysis                                ┃
┃ ╭─────────────────┬────────────────────────────────────────────────┬────────────┬────────────╮ ┃
┃ │     Series Type │ Histogram                                      │      Types │   Indicies │ ┃
┃ ├─────────────────┼────────────────────────────────────────────────┼────────────┼────────────┤ ┃
┃ │         Targets │     ┌────────────────────────────────────────┐ │    NaNs: 0 │   Start: 0 │ ┃
┃ │                 │ 14.0┤             ██                         │ │     dtype: │   End: 249 │ ┃
┃ │                 │ 11.7┤             ██     █                   │ │    float64 │            │ ┃
┃ │                 │  9.3┤     ████    ██     █ ██ ██             │ │            │            │ ┃
┃ │                 │  7.0┤██ ████████████ █ █ ███████ ██ ██ ████  │ │            │            │ ┃
┃ │                 │  4.7┤███████████████████ ████████████████████│ │            │            │ ┃
┃ │                 │  2.3┤████████████████████████████████████████│ │            │            │ ┃
┃ │                 │  0.0┤████████████████████████████████████████│ │            │            │ ┃
┃ │                 │     └┬─────────┬─────────┬────────┬─────────┬┘ │            │            │ ┃
┃ │                 │    -0.00     0.25      0.50     0.75     1.00  │            │            │ ┃
┃ ├─────────────────┼────────────────────────────────────────────────┼────────────┼────────────┤ ┃
┃ │     Predictions │     ┌────────────────────────────────────────┐ │    NaNs: 0 │   Start: 0 │ ┃
┃ │                 │ 11.0┤        ██                              │ │     dtype: │   End: 249 │ ┃
┃ │                 │  9.2┤        ███ ██    █ █                 ██│ │    float64 │            │ ┃
┃ │                 │  7.3┤   ██ ██████████  ████ █   ██   ███ ████│ │            │            │ ┃
┃ │                 │  5.5┤  ██████████████  ████ █████████████████│ │            │            │ ┃
┃ │                 │  3.7┤█████████████████ ████ █████████████████│ │            │            │ ┃
┃ │                 │  1.8┤████████████████████████████████████████│ │            │            │ ┃
┃ │                 │  0.0┤████████████████████████████████████████│ │            │            │ ┃
┃ │                 │     └┬─────────┬─────────┬────────┬─────────┬┘ │            │            │ ┃
┃ │                 │    -0.01     0.25      0.50     0.76     1.01  │            │            │ ┃
┃ ╰─────────────────┴────────────────────────────────────────────────┴────────────┴────────────╯ ┃
┃                                      Residual Diagnostics                                      ┃
┃ ╭─────────────────────┬─────────────────────────────────────────────────┬────────────────────╮ ┃
┃ │         Metric Name │ Result                                          │ Parameters         │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │           Residuals │ 0     -0.224918                                 │ {}                 │ ┃
┃ │         (residuals) │ 1      0.250975                                 │                    │ ┃
┃ │                     │ 2      0.206893                                 │                    │ ┃
┃ │                     │ 3      0.632068                                 │                    │ ┃
┃ │                     │ 4      0.467366                                 │                    │ ┃
┃ │                     │          ...                                    │                    │ ┃
┃ │                     │ 245    0.336682                                 │                    │ ┃
┃ │                     │ 246    0.132184                                 │                    │ ┃
┃ │                     │ 247   -0.339346                                 │                    │ ┃
┃ │                     │ 248    0.422431                                 │                    │ ┃
┃ │                     │ 249   -0.424224                                 │                    │ ┃
┃ │                     │ Length: 250, dtype: float64                     │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │           Ljung Box │ 'zero-size array to reduction operation maximum │ {}                 │ ┃
┃ │          Statistics │ which has no identity'                          │                    │ ┃
┃ │ (ljung_box_statist… │                                                 │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │         Mean of the │      ┌────────────────────────────────────────┐ │ {}                 │ ┃
┃ │           Residuals │  0.73┤     ▐                               ▗  │ │                    │ ┃
┃ │    (residuals_mean) │  0.51┤▐▗▌  ▐     ▖    ▗▌       ▗      ▖    █  │ │                    │ ┃
┃ │                     │  0.28┤▐▐▌▗▌▟▗▟▚▗▐▚▄▌▗▐▐▙▗▞▟ ▄▌ █ ▗ ▟▗▟▌▌▙ ▄▜ ▖│ │                    │ ┃
┃ │                     │  0.05┤█▐▙▐▙█▟▐▝█▌ █▌▟▜▟▛█▌█▟█▙▌█▌█▐▐▐▌▜██▐▐▐▌▙│ │                    │ ┃
┃ │                     │ -0.18┤█▐█▌███▐ ▜▌ ▝▜▜ █▘█▌█▜▝█▙▛███ ▘▌▐█▜▐▐▐▐▌│ │                    │ ┃
┃ │                     │ -0.41┤ ▘ ▘█▜▜▝ ▐▌     ▌ ▌▘▝  █▜▌▜▌█  ▌▝▛▝█▐▐ ▘│ │                    │ ┃
┃ │                     │ -0.63┤    ▜     ▘     ▌ ▘    ▝ ▘ ▘▝  ▌   ▝▝▐  │ │                    │ ┃
┃ │                     │      └┬─────────┬─────────┬────────┬─────────┬┘ │                    │ ┃
┃ │                     │       1        32        63       94       125  │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │  Standard Deviation │     ┌─────────────────────────────────────────┐ │ {}                 │ ┃
┃ │    of the Residuals │ 0.70┤      ▖▌               ▖    ▖            │ │                    │ ┃
┃ │     (residuals_std) │ 0.58┤ ▗    ▌▌ ▗▌ ▖    ▖     █  ▖ ▌  ▟  ▗▗     │ │                    │ ┃
┃ │                     │ 0.47┤ ▐▗   ▌▌▗█▌ ▌   ▐▌ ▗  ▖█ ▐▙ ▌ ▖█  ▐▐     │ │                    │ ┃
┃ │                     │ 0.35┤ ▐▐▗  ▌▌▞█▙▗▌ ▗▚▐▌ ▐▗▖▌█ ▟▐ ▌▐▌█ ▗▐▐▌▖▗▌▞│ │                    │ ┃
┃ │                     │ 0.23┤ ▟▐█▌▖▌▙▌██▌▙▖▐▐▟▌ ▟█▌▌█▟█▝▟▌▐▐▜▙▜▛▌▜▌▐▌▌│ │                    │ ┃
┃ │                     │ 0.12┤▐▐▟█▜▚▌▌▌▛▛▌▜▐▐▝▛▌▟██▚▙▛█▌ ▀▌█▐▐▜▐▌  ▀█▌▌│ │                    │ ┃
┃ │                     │ 0.00┤▟ ▘▀  ▝▌▘▘▌▘  ▘  ▐▜▝▘ ▘ ▝   ▝ ▐▝  ▘   ▜▝▘│ │                    │ ┃
┃ │                     │     └┬─────────┬─────────┬─────────┬─────────┬┘ │                    │ ┃
┃ │                     │      1        32        63        94       125  │                    │ ┃
┃ ╰─────────────────────┴─────────────────────────────────────────────────┴────────────────────╯ ┃
┃                                  Forecast Errors - Regression                                  ┃
┃ ╭─────────────────────┬─────────────────────────────────────────────────┬────────────────────╮ ┃
┃ │ Mean Absolute Error │     ┌─────────────────────────────────────────┐ │ {}                 │ ┃
┃ │               (mae) │ 0.73┤     ▗▌▖               ▖                 │ │                    │ ┃
┃ │                     │ 0.61┤▗   ▟▐▌▌ ▗▌     ▗ ▗    ▛▖   ▌▖ ▗▌ ▗▗ ▗█  │ │                    │ ┃
┃ │                     │ 0.49┤▐▐▖ █▐▌▌ ▟▌ ▌   ▐▜▐▗  ▖▌▌▞▌▐█▌ █▌▄▐▐▟██  │ │                    │ ┃
┃ │                     │ 0.38┤▐▟█▄█▐▐▙▟█▚▙▌▗ ▄▐▐▐▐ ▖▌▌▌▌▜██▙▌███▐▐█▛▛▖▞│ │                    │ ┃
┃ │                     │ 0.26┤▟▝▜▐▜▌▐▌▘█▐▌▚█▐▝▀▐▐▞▜▌▙▌█▌▝██▜▐▜▐▜▀▀▜▌ █▌│ │                    │ ┃
┃ │                     │ 0.14┤   ▐ ▘ ▘ █ ▘ ▜▐  ▐█ ▐█▝▌█▘  ▐ ▐▐▐    ▘ █ │ │                    │ ┃
┃ │                     │ 0.02┤   ▝     ▌    ▀  ▝▜  ▝  ▝   ▝  ▝         │ │                    │ ┃
┃ │                     │     └┬─────────┬─────────┬─────────┬─────────┬┘ │                    │ ┃
┃ │                     │      1        32        63        94       125  │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │       Mean Absolute │     ┌─────────────────────────────────────────┐ │ {}                 │ ┃
┃ │    Percentage Error │ 38.2┤                        ▗▌               │ │                    │ ┃
┃ │              (mape) │ 31.8┤                        ▐▌               │ │                    │ ┃
┃ │                     │ 25.5┤    ▟▟                  ▐▌               │ │                    │ ┃
┃ │                     │ 19.1┤    ██  ▖               ▐▌               │ │                    │ ┃
┃ │                     │ 12.7┤    ██ ▐▌ ▌             ▐▌               │ │                    │ ┃
┃ │                     │  6.4┤   ▗██ ▐▌ ▌     ▗ ▗     ▐▌   ▖  ▖        │ │                    │ ┃
┃ │                     │  0.0┤▄▟▄▀▛▛▞█▙▄▙▄▄▄▄▄▟▚▟▟▟▄▚▙█▛▄▙█▚▟▟▚▟▄▟▜▞▞▄▞│ │                    │ ┃
┃ │                     │     └┬─────────┬─────────┬─────────┬─────────┬┘ │                    │ ┃
┃ │                     │      1        32        63        94       125  │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │      Symmetric Mean │     ┌─────────────────────────────────────────┐ │ {}                 │ ┃
┃ │ Absolute Percentage │ 0.90┤    ▟▗▌                                  │ │                    │ ┃
┃ │       Error (smape) │ 0.75┤    █▐▌▌  ▖       ▐ ▟       ▗▌     ▗     │ │                    │ ┃
┃ │                     │ 0.60┤▗▐  █▌▌▌▄▗▌▖    ▗▗▐▗█  █  ▖ █▌▟▟▄  ▐  ▙ ▗│ │                    │ ┃
┃ │                     │ 0.46┤▐▐▙▜█▌▐█▛▟▌▌▖  ▟▐▜▐▐█ ▌▛▄█▌▌█▌███▙▐▐▐▟▛▖▌│ │                    │ ┃
┃ │                     │ 0.31┤▐▜█▝█▌ ▀ █▚▙▙▗▐▝▘▐▐▌▐█▌▌█▌▝███▐██▜▐▞█▌▘▛▌│ │                    │ ┃
┃ │                     │ 0.16┤▟ ▝ ▌▘   ▛ ▘▀▛▟  ▐█▌▐█▝▌█▌ ▝▜▜▐▐▝ ▘▘▜▌ ▘ │ │                    │ ┃
┃ │                     │ 0.02┤         ▌       ▝▝  ▝  ▝   ▝  ▝         │ │                    │ ┃
┃ │                     │     └┬─────────┬─────────┬─────────┬─────────┬┘ │                    │ ┃
┃ │                     │      1        32        63        94       125  │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │  Mean Squared Error │      ┌────────────────────────────────────────┐ │ {'squared': True}  │ ┃
┃ │               (mse) │ 0.548┤     ▐▗▌                                │ │                    │ ┃
┃ │                     │ 0.457┤     ▐▟▌              ▗▌   ▟   ▌     ▗  │ │                    │ ┃
┃ │                     │ 0.366┤    ▟▐█▌ ▟      ▙ ▖   ▐▚ ▟ █  ▐▌  ▄▄▗█  │ │                    │ ┃
┃ │                     │ 0.274┤▐▐▖ █▐█▌▗▌▌▗▌   ▛▖▌ ▗ ▐▐▄▜ █▟▗▐▌▙███▐█  │ │                    │ ┃
┃ │                     │ 0.183┤▐▟▙ █▐▜▌▐▌▌█▌▖▐ ▌▌▌▌▟▐▐▐█ ▙███▐▌████▐█  │ │                    │ ┃
┃ │                     │ 0.092┤▐▝▌██▞▐▝█▌█▝█▌▐▜▌▌▙██▐▟▐█ ▛███▐▙█▌▀▝▞▘▙▛│ │                    │ ┃
┃ │                     │ 0.000┤▀  ▜ ▘▝ ▝▌▝ ▘▐▞  ▛▌ ▀▞▝▝▛  ▝▌▝▛▛▌     █ │ │                    │ ┃
┃ │                     │      └┬─────────┬─────────┬────────┬─────────┬┘ │                    │ ┃
┃ │                     │       1        32        63       94       125  │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │   Root Mean Squared │     ┌─────────────────────────────────────────┐ │ {'squared': False} │ ┃
┃ │        Error (rmse) │ 0.74┤     ▗▌▌               ▄    ▖   ▖        │ │                    │ ┃
┃ │                     │ 0.62┤▗   ▟▐▌▌ ▗▌ ▖   ▐▖▗    ▛▖ ▌ ▌▖ ▟▌▄▗▗▄▗█  │ │                    │ ┃
┃ │                     │ 0.50┤▐▐▖ █▐▌▌ ▟▌▗▌  ▖▐▐▐▗ ▖▖▌▌▞▚▐█▙▌███▐▐███  │ │                    │ ┃
┃ │                     │ 0.38┤▐▀█▄█▞▐▛▞█▚▛▌▟▐▚▟▐▐▐▟▌▌▌█▌▐███▌███▞▟▜▛▛▖▞│ │                    │ ┃
┃ │                     │ 0.26┤▟ ▜▐▀▌▐▌▘█▝▌▚▜▐▝▝▐▐▀▜▌▙▌█▌▝██▝▐▜▐▜▘ ▝▌ █▌│ │                    │ ┃
┃ │                     │ 0.14┤   ▐   ▘ ▛   ▐▐  ▐█ ▐█ ▘█   ▐ ▐▐▐      █ │ │                    │ ┃
┃ │                     │ 0.02┤   ▝     ▌    ▀  ▝▜  ▝  ▝      ▝         │ │                    │ ┃
┃ │                     │     └┬─────────┬─────────┬─────────┬─────────┬┘ │                    │ ┃
┃ │                     │      1        32        63        94       125  │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │   Root Mean Squared │      ┌────────────────────────────────────────┐ │ {'squared': False} │ ┃
┃ │   Log Error (rmsle) │ 0.533┤     ▐ ▖                                │ │                    │ ┃
┃ │                     │ 0.447┤    ▟▐▟▌ ▗      ▖ ▖   ▐▌ ▗ ▟▗ ▗▌  ▗  ▟  │ │                    │ ┃
┃ │                     │ 0.361┤▐▐▖ █▐█▌ ▌▌ ▖   ▛▖▌▖  ▐▐▌█ ██▟▐▌▙▙██▐█  │ │                    │ ┃
┃ │                     │ 0.275┤▐▟▙▖█▞▐▜▟▌▙█▌▖▐▖▌▌▌▙█▐▐▐█ ▙███▐▌████▐▛▖▗│ │                    │ ┃
┃ │                     │ 0.189┤▐ ▌██▌▐ ▜▌▜▝█▌▐▜▘▌▙▀█▐▟▐█ ▛███▐▙█▌▘▜▞ ▙▌│ │                    │ ┃
┃ │                     │ 0.102┤▀  █ ▘▝ ▐▌   ▐▞  █▌ █▌▜▐▛  ▐▌▝█▌▘     ▛ │ │                    │ ┃
┃ │                     │ 0.016┤   ▝    ▝▌   ▝▘  ▀▌  ▘  ▘   ▘  ▘        │ │                    │ ┃
┃ │                     │      └┬─────────┬─────────┬────────┬─────────┬┘ │                    │ ┃
┃ │                     │       1        32        63       94       125  │                    │ ┃
┃ ├─────────────────────┼─────────────────────────────────────────────────┼────────────────────┤ ┃
┃ │   R-squared (r_two) │           ┌───────────────────────────────────┐ │ {}                 │ ┃
┃ │                     │        1.0┤▝▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▜▛▀▀▀│ │                    │ ┃
┃ │                     │  -242903.5┤                              ▐▌   │ │                    │ ┃
┃ │                     │  -485808.0┤                              ▐▌   │ │                    │ ┃
┃ │                     │  -728712.5┤                              ▐▌   │ │                    │ ┃
┃ │                     │  -971617.0┤                              ▐▌   │ │                    │ ┃
┃ │                     │ -1214521.4┤                              ▐▌   │ │                    │ ┃
┃ │                     │ -1457425.9┤                              ▝▌   │ │                    │ ┃
┃ │                     │           └┬────────┬───────┬────────┬───────┬┘ │                    │ ┃
┃ │                     │            1       32      63       94     125  │                    │ ┃
┃ ╰─────────────────────┴─────────────────────────────────────────────────┴────────────────────╯ ┃
┃                                                                                                ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

You can also show the results in a Report easily:

import numpy as np
from krisi import score

score(
    y=np.random.rand(10000),
    predictions=np.random.rand(10000),
    calculation="rolling",
).generate_report('pdf')

Generates:

PDF report on Metrics over ime

Default Metrics

See evaluate/library for source. Contributors are continously adding new default metrics, press watch to keep track of the project and see in issues planned default metrics.

Residual Diagnostics

  • Mean of the Residuals
  • Standard Deviation of the Residuals
  • Ljung Box Statistics
  • (wip) Autocorrelation of Residuals

Regression Errors

  • Mean Absolute Error
  • Mean Absolute Percentage Error
  • Symmetric Mean Absolute Percentage Error
  • Mean Squared Error
  • Root Mean Squared Error
  • Root Mean Squared Log Error
  • R-squared

Classification Errors

  • Matthew Correlation Coefficient
  • F1 Score
  • Precision
  • Recall
  • Accuracy

Examples, Walkthroughs and Blog Posts

Name Type Dataset Type Docs Link Colab
⚡️ Core Walkthrough Walkthrough Synthetic Notebook Colab
🚄 Collapsed Metrics vs Metrics over Time Walkthrough Energy - Colab
📚 Example Collection Example Synthetic Collection Link -

Our Open-core Time Series Toolkit

Krisi Fold Fold/Models Fold/Wrapper

If you want to try them out, we'd love to hear about your use case and help, please book a free 30-min call with us!

Advanced usage

Creating Metrics with metadata.

import numpy as np
from krisi.evaluate import Metric, MetricCategories, ScoreCard

# Random targets and predictions for Demo
target, predictions = np.random.rand(100), np.random.rand(100)

# Create ScoreCard
sc = ScoreCard(target, predictions)

# Calculate a random metric for Demo
calculated_metric_example = (target - predictions).mean()

# Adding a simple new metric (a float)
# As a Dictionary:
sc["metric_barebones"] = calculated_metric_example

# As an Object assignment:
sc.another_metric_barebones = calculated_metric_example * 2.0

sc["metric_with_metadata"] = Metric(
    name="A new, own Metric",
    category=MetricCategories.residual,
    result=calculated_metric_example * 3.0,
    parameters={"hyper_1": 5.0},
)

# Updating the metadata of an existing metric
sc.metric_barebones = dict(info="Giving description to a metric")

# Print a pretty summary to the console
sc.print(with_info=True)
Outputs:
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Result of <your_model_name> on <your_dataset_name> tested on insample ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃                                                                                                                                 ┃
┃                                                      Residual Diagnostics                                                       ┃
┃ ╭─────────────────────┬────────────────────────────────────────────────┬────────────────────┬─────────────────────────────────╮ ┃
┃ │         Metric Name │ Result                                         │ Parameters         │ Info                            │ ┃
┃ ├─────────────────────┼────────────────────────────────────────────────┼────────────────────┼─────────────────────────────────┤ ┃
┃ │         Mean of the │ 0.035                                          │ {}                 │ ''                              │ ┃
┃ │           Residuals │                                                │                    │                                 │ ┃
┃ │    (residuals_mean) │                                                │                    │                                 │ ┃
┃ ├─────────────────────┼────────────────────────────────────────────────┼────────────────────┼─────────────────────────────────┤ ┃
┃ │  Standard Deviation │ 0.42                                           │ {}                 │ ''                              │ ┃
┃ │    of the Residuals │                                                │                    │                                 │ ┃
┃ │     (residuals_std) │                                                │                    │                                 │ ┃
┃ ├─────────────────────┼────────────────────────────────────────────────┼────────────────────┼─────────────────────────────────┤ ┃
┃ │   A new, own Metric │ 0.105                                          │ {'hyper_1': 5.0}   │ 'Giving description to a        │ ┃
┃ │ (yet_another_metri… │                                                │                    │ metric'                         │ ┃
┃ ╰─────────────────────┴────────────────────────────────────────────────┴────────────────────┴─────────────────────────────────╯ ┃
┃                                                  Forecast Errors - Regression                                                   ┃
┃ ╭─────────────────────┬────────────────────────────────────────────────┬────────────────────┬─────────────────────────────────╮ ┃
┃ │ Mean Absolute Error │ 0.35                                           │ {}                 │ '(Mean absolute error)          │ ┃
┃ │               (mae) │                                                │                    │ represents the difference       │ ┃
┃ │                     │                                                │                    │ between the original and        │ ┃
┃ │                     │                                                │                    │ predicted values extracted by   │ ┃
┃ │                     │                                                │                    │ averaged the absolute           │ ┃
┃ │                     │                                                │                    │ difference over the data set.'  │ ┃
┃ ├─────────────────────┼────────────────────────────────────────────────┼────────────────────┼─────────────────────────────────┤ ┃
┃ │       Mean Absolute │ 2.543                                          │ {}                 │ ''                              │ ┃
┃ │    Percentage Error │                                                │                    │                                 │ ┃
┃ │              (mape) │                                                │                    │                                 │ ┃
┃ ├─────────────────────┼────────────────────────────────────────────────┼────────────────────┼─────────────────────────────────┤ ┃
┃ │  Mean Squared Error │ 0.178                                          │ {'squared': True}  │ '(Mean Squared Error)           │ ┃
┃ │               (mse) │                                                │                    │ represents the difference       │ ┃
┃ │                     │                                                │                    │ between the original and        │ ┃
┃ │                     │                                                │                    │ predicted values extracted by   │ ┃
┃ │                     │                                                │                    │ squared the average difference  │ ┃
┃ │                     │                                                │                    │ over the data set.'             │ ┃
┃ ├─────────────────────┼────────────────────────────────────────────────┼────────────────────┼─────────────────────────────────┤ ┃
┃ │   Root Mean Squared │ 0.421                                          │ {'squared': False} │ '(Root Mean Squared Error) is   │ ┃
┃ │        Error (rmse) │                                                │                    │ the error rate by the square    │ ┃
┃ │                     │                                                │                    │ root of Mean Squared Error.'    │ ┃
┃ ├─────────────────────┼────────────────────────────────────────────────┼────────────────────┼─────────────────────────────────┤ ┃
┃ │   Root Mean Squared │ 0.29                                           │ {'squared': False} │ ''                              │ ┃
┃ │   Log Error (rmsle) │                                                │                    │                                 │ ┃
┃ ├─────────────────────┼────────────────────────────────────────────────┼────────────────────┼─────────────────────────────────┤ ┃
┃ │      R-squared (r2) │ -1.28                                          │ {}                 │ '(Coefficient of determination) │ ┃
┃ │                     │                                                │                    │ represents the coefficient of   │ ┃
┃ │                     │                                                │                    │ how well the values fit         │ ┃
┃ │                     │                                                │                    │ compared to the original        │ ┃
┃ │                     │                                                │                    │ values. The value from 0 to 1   │ ┃
┃ │                     │                                                │                    │ interpreted as percentages. The │ ┃
┃ │                     │                                                │                    │ higher the value is, the better │ ┃
┃ │                     │                                                │                    │ the model is.'                  │ ┃
┃ ╰─────────────────────┴────────────────────────────────────────────────┴────────────────────┴─────────────────────────────────╯ ┃
┃                                                                 Unknown                                                         ┃
┃ ╭─────────────────────┬────────────────────────────────────────────────┬────────────────────┬─────────────────────────────────╮ ┃
┃ │          own_metric │ 0.035                                          │ {}                 │ ''                              │ ┃
┃ │        (own_metric) │                                                │                    │                                 │ ┃
┃ ├─────────────────────┼────────────────────────────────────────────────┼────────────────────┼─────────────────────────────────┤ ┃
┃ │      another_metric │ 0.07                                           │ {}                 │ ''                              │ ┃
┃ │    (another_metric) │                                                │                    │                                 │ ┃
┃ ╰─────────────────────┴────────────────────────────────────────────────┴────────────────────┴─────────────────────────────────╯ ┃
┃                                                                                                                                 ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

Contribution

Join our Discord for live discussion!

Submit an issue or reach out to us on info at dream-faster.ai for any inquiries.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

krisi-1.4.4.tar.gz (63.8 kB view details)

Uploaded Source

Built Distribution

krisi-1.4.4-py3-none-any.whl (70.1 kB view details)

Uploaded Python 3

File details

Details for the file krisi-1.4.4.tar.gz.

File metadata

  • Download URL: krisi-1.4.4.tar.gz
  • Upload date:
  • Size: 63.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.26.0

File hashes

Hashes for krisi-1.4.4.tar.gz
Algorithm Hash digest
SHA256 1c4d4765beaf1b32b450e067c5d224be0a5e16e684db183454001131742de6b4
MD5 28e33f6961819ffafb9433ca3ae445c1
BLAKE2b-256 9f37ad50efa07ad764981643bbfa8cb04415ae5ed1444b3309b82628e972b526

See more details on using hashes here.

File details

Details for the file krisi-1.4.4-py3-none-any.whl.

File metadata

  • Download URL: krisi-1.4.4-py3-none-any.whl
  • Upload date:
  • Size: 70.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.26.0

File hashes

Hashes for krisi-1.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 e122d42a1c6ae2cc66ec6014deed38bc973ac8328a69278da3543544c6bd7d22
MD5 d94a9f18a64eb79a314d1f8a4010ed61
BLAKE2b-256 c266d1e693f113f602912a47e942182687172853601d2ad5a241dc5ac876ffdc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page